
YAMAHA

Professional Multi-effect Processor Processeur Multi-effets Professionnel Professionneller Multi-effekt Prezessor

Operation Manual Manuel D'utilisation Bedienungsanleitung

Professionneller Multi-effekt Prezessor

Bedienungsanleitung

"Aural Exciter ${}^\circledR$ " ist ein eingetragenes Warenzeichen und wird unter von Aphex Systems, Ltd erteilter Lizenz hergestellt.

Bescheinigung des Importeurs

Hieramit wird bescheinigt, daß der/die/das

<u>Professional Multi-effect Processor Typ: SPX900</u> (Gerät, Typ, Bezeichnung)

in Übereinstimmung mit den Bestimmungen der

VERFÜGUNG 1046/84

(Amtsblattverfügung)

funk-entstört ist.

Der Deutschen Bundespost wurde das Inverkehrbringen dieses Gerätes angezeigt und die Berechtigung zur Überprüfung der Serie auf Einhaltung der Bestimmungen eingeräumt.

Yamaha Europa GmbH

Name des Importeurs

EINLEITUNG

Zu allererst möchten wir Ihnen dafür danken, daß Sie sich für den Professionneller Multi-Effekt Prozessor SPX900 von Yamaha entschieden haben. Der SPX900 ist ein digitales Gerät, das neben Nachhall auch eine ganze Reihe von Effekten bietet, die in insgesamt 50 Preset-Speichern untergebracht wurden. Neben Reverb enthält der SPX900 Erstreflexionen (Early reflections), Verzögerungseffekte (Delay), Echo, Gate- und Modulationseffekte sowie einen vielseitigen Kompressor und Aural Exciter®. Darüberhinaus bietet er Multi-Effekte, die den SPX900 in mehrere Effekt-Geräte verwandeln, sowie unabhängige 2-Kanal-Effekte, Freeze-Programme (für Kurz-Samples) u.v.a. Die Abtastrate des SPX900 beträgt 44,1 kHz und die Wiedergabe ist im Bereich zwischen 20Hz und 20kHz völlig glatt, so daß die Effekte nicht nur "sauber", sondern auch transparent klingen. Die Presets können editiert, umbenannt und in einem der 49 RAM-Speicher untergebracht werden. Jedes Effekt-Programm ist mit einem Zweiband-Entzerrer und einem Dynamik-Filter ausgestattet, um wirklich das bestmögliche Klangergebnis zu erzielen. Darüberhinaus enthält der SPX900 aber noch ein Reihe "interner Parameter", die die Steuerung des Effektklanges noch verbessern. Selbstverständlich ist der SPX900 MIDIfähig: Die Buchse MIDI erlaubt das Aufrufen eines Speichers von einem externen Gerät aus. Und mit einer umschaltbaren MIDI OUT/THRU-Buchse ist der SPX900 ebenfalls ausgestattet. Im OUT-Betrieb lassen sich die editierten RAM-Programme via MIDI zu anderen Geräten bzw. zu einem MIDI-Datenrekorder übertragen. Im Bedarfsfalle können diese Daten zu einem späteren Zeitpunkt über die Buchse MIDI IN geladen werden. Die Ein- und Ausgänge sind wahlweise auf -20dBm oder +4dBm einstellbar, so daß der SPX900 wirklich mit den meisten Geräten kompatibel ist. Diese Bedienungsanleitung soll Ihnen beim Kennenlernen des SPX900 helfen –bitte lesen Sie sie und bewahren sie an einem sicheren Ort auf.

INHALTSÜBERSICHT

VORSICHTSMASSNAHMEN	DIE TRANSPONIERUNGS PROGRAMME	17
1: BEDIENUNGSELEMENTE UND ANSCHLÜSSE3	■ 28. PITCH CHANGE 1	17
FRONTPLATTE3	■ 29. PITCH CHANGE 2	17
RÜCKSEITE5	■ 30. PITCH CHANGE 3	17
	■ 31. MONO PITCH	17
2: ALLGEMEINE BEDIENUNGSVORGÄNGE6	DAS SAMPLE-PROGRAMM	18
SPEICHERANORDNUNG6	■ 32. FREEZE	18
ANWAHL EINES EFFEKTSPEICHERS6	DIE STEREO-PANORAMA PROGRAMME	20
UMGEHEN DES EFFEKTES6	■ 33. PAN	20
AUFRUFEN UND EDITIEREN DER	■ 34. TRIGGERED PAN	20
PROGRAMM-PARAMETER6	DAS KOMPRESSOR PROGRAMM	21
SPEICHERN EINES PROGRAMMES7	■ 35. COMPRESSOR	21
BELEGUNG DER EXTERNEN	VERZERRUNG	22
STEUERELEMENTE8	■ 36. DISTORTION	22
3: DIE PROGRAMME UND PARAMETER9	DAS AURAL EXCITER-PROGRAMM	22
PARAMETER DIE IN ALLEN	■ 37. AURAL EXCITER	22
PROGRAMMEN VORKOMMEN9	DIE MULTI-EFFEKT PROGRAMME	23
LEVEL-PARAMETER	■ 38. MULTI(ECH&REV)1	23
(Anwahl mit der Taste LEVEL)9	■ 39. MULTI(ECH&REV)2	23
EQ-PARAMETER	■ 40. MULTI(CHO&REV)1	23
(Anwahl mit der Taste EQ)9	■ 41. MULTI(CHO&REV)2	
DIE REVERB-PROGRAMME10	■ 42. MULTI(CHO&REV)3	
■ 1. REV1 HALL10	■ 43. MULTI(SYM&REV)1	
■ 2. REV2 HALL&GATE10	■ 44. MULTI(SYM&REV)2	23
■ 3. REV3 ROOM 110	■ 45. MULTI(SYM&REV)3	23
■ 4. REV4 ROOM 210	■ 46. MULTI(EXC&REV)1	
■ 5. REV5 ROOM 310	■ 47. MULTI(EXC&REV)2	23
■ 7. REV7 VOCAL 110	DOPPELE EFFEKT-PROGRAMME	24
■ 8. REV8 VOCAL 210	■ 48. PLATE+HALL	24
■ 9. REV9 PLATE10	■ 49. ER+REV	25
■10. REV10 PLATE&GATE10	■ 50. ECHO+REV	25
DIE ECHO ROOM REVERB-PROGRAMME12	4: DIE UTILITY-FUNKTIONEN	27
■ 6. REV6 WHITE ROOM12	TITLE EDIT	
■11. REV11 TUNNEL12	DIGITAL IN ATT.	
■12. REV12 CANYON12	USER ER EDIT	
■13. REV13 BASEMENT12	MEMORY PROTECT	
DIE ERSTREFLEFXIONS-PROGRAMME13	MIDI CTRL & MIDI PGM CHANGE	
■14. PERCUSSION ER13	MIDI CTRL ASSIGN	
■15. GATE REVERB13	BULK OUT 1 & BULK OUT 2	
■16. REVERSE GATE13	F.SW MEMORY RCL	
■ 17.PROGRAMMABLE ER13		•
DIE DELAY-PROGRAMME14	5: DATA & SPECIFICATIONS	Add-1
■ 18. DELAY L, R14	ROM CONTENTS AND CONTROLLABLE	
■ 19. DELAY L, C, R14	PARAMETERS	
DAS ECHO-PROGRAMM15	MIDI DATA FORMAT	
■ 20. STEREO ECHO15	MIDI IMPLEMENTATION CHART	
DIE MODULATIONS-PROGRAMME15	BLOCK DIAGRAM	
■ 21. STEREO FLANGE15	DIMENSIONS	
■ 22. CHORUS 115	TECHNISCHE DATEN	Add-41
■ 23. CHORUS 215	`	
■ 24. STEREO PHASING15	·	
■ 25. TREMOLO15		
■ 26. SYMPHONIC15		
NOISE GATE16		

■ 27. ADR-NOISE GATE16

VORSICHTSMASSNAHMEN

1. ÜBERMÄSSIGE HITZE, FEUCHTIGKEIT UND STAUBIGE ORTE MEIDEN.

Am besten stellt man dieses Gerät nie an Orten auf, die starker Hitze oder Feuchtigkeit ausgesetzt sind –Heizkörper und Öfen sind unbedingt zu meiden. Staub und starke Vibrationen sind ebenfalls schlecht für den SPX900.

2. DAS GERÄT NICHT FALLENLASSEN

Behandeln Sie den SPX900 mit der gebührenden Umsicht.

3. NIEMALS DAS GEHÄUSE ÖFFNEN BZW. REPARATURVERSUCHE UNTERNEHMEN.

Überlassen Sie Reparaturarbeiten ausschließlich dem qualifizierten Kundendienst. Wird das Gehäuse von unbefugten Personen geöffnet bzw. das Gerät mit neuen Teilen nachgerüstet, geht automatisch der Garantieanspruch verloren.

4. VERBINDUNGEN NUR BEI AUSGESCHALTETEM GERÄT HERSTELLEN.

Schalten Sie den SPX900 vor dem Anschließen bzw. Trennen von Kabeln immer aus. Andernfalls kann es zu Beschädigungen des SPX900 sowie der angeschlossenen Geräte kommen.

5. DIE KABEL SACHGERECHT BEHANDELN

Beim Anschließen und Trennen der Kabel immer am Stecker –niemals am Kabel selbst– ziehen, um das Reißen der Adern und eventuelle Kurzschlüsse zu vermeiden.

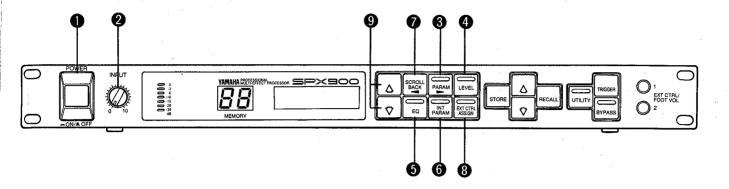
6. MIT EINEM WEICHEN TUCH ABWISCHEN

Zum Reinigen des SPX900 immer ein trockenes, weiches Tuch verwenden. Waschbenzin und Lösungsmittel greifen die lackierten Oberflächen an.

7. MIT DER RICHTIGEN NETZSPANNUNG BETREIBEN.

Kontrollieren Sie vor dem Einschalten, ob das Gerät mit der in Ihrem Land verwendeten Netzspannung betrieben werden kann.

8. FREQUENZEINSTREUUNG


Da der SPX900 ein digitales Gerät ist, kommt es bisweilen zu Störungen des Fernseh- oder Rundfunkempfangs. Ist das der Fall, sollte der SPX900 an einem anderen Ort aufgestellt werden.

9. RUHESTROMVERSORGUNG

Der SPX900 ist mit einer Lithiumbatterie ausgerüstet, die garantiert, daß der Speicherinhalt auch nach dem Ausschalten erhalten bleibt. Die Lebensdauer dieser Batterie beträgt ca. 5 Jahre. Sinkt die Spannung aber bis auf einen kritischen Wert ab, wird beim Einschalten die Meldung "***WARNING***LOW BATTERY" angezeigt. In diesem Fall sollten Sie die Batterie so schnell wie möglich auswechseln lassen. Niemals versuchen, die Batterie selbst auszuwechseln!

1. BEDIENUNGSELEMENTE UND ANSCHLÜSSE

FRONTPLATTE

Taste POWER

Einmal drücken, um den SPX900 einzuschalten und noch einmal,um ihn wieder auszuschalten. Beim Einschalten wird automatisch das zuletzt angewählte Programm aufgerufen.

2 INPUT-Regler

Mit diesem Regler kann man den Eingangspegel der Buchsen in einem Bereich zwischen -90dB und +10dB (wenn sich der INPUT-Schalter auf der Rückseite in der +4dB-Stellung befindet) bzw. zwischen -110dB und -14dB (INPUT-Schalter befindet sich in der -20dB-Stellung) einstellen.

Taste PARAM ►

Hiermit ruft man die wichtigsten Parameter eines Programms auf. Durch wiederholtes Drücken dieser Taste geht man die in einem Programm vorkommenden Parameter der Reihe nach durch. Mit der Taste SCROLL BACK (7) kann man die Parameter in umgekehrter Reihenfolge aufrufen. Sobald der gesuchte Parameter angezeigt wird, kann man seinen Wert mit den Tasten \$\triangle\$ und \$\forall \text{ (9)}\$ ändern. Außerdem dient die Taste PARAM noch zum Führen des Kursors (vorwärts) in mehreren Utility-Funktionen.

• Alles weitere auf S. 9, "DIE PROGRAMME UND PARAMETER".

Taste LEVEL

Mit dieser Taste hat man Zugriff auf den Ausgangspegel und die Balance-Einstellung der Programme. Auch hier gilt, daß man die Parameter durch wiederholtes Betätigen der Taste LEVEL der Reihe nach und durch Drücken der Taste SCROLL BACK (7) in umgekehrter Reihenfolge durchgeht. Sobald der gesuchte Parameter angezeigt wird, kann man seinen Wert mit den Tasten \triangle und \bigcirc (9) ändern.

• Siehe S. 9.

⑤ Taste ΕΩ

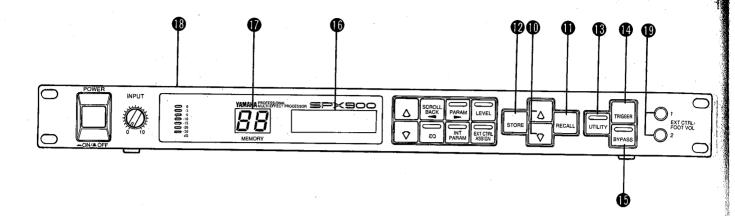
Mit dieser Taste hat man Zugriff auf den Digital-Entzerrer oder Dynamik-Filter eines Programms. Durch wiederholtes Drücken dieser Taste geht man die in einem Programm vorkommenden Parameter der Reihe nach durch. Mit der Taste SCROLL BACK (7) kann man die Parameter in umgekehrter Reihenfolge aufrufen. Sobald der gesuchte Parameter angezeigt wird, kann man seinen Wert mit den Tasten \triangle und ∇ (9) ändern.

• Siehe S. 9.

Taste INT PARAM

Mit dieser Taste erreicht man eine Reihe besonderer (sog. "interner") Parameter. Durch wiederholtes Drücken dieser Taste geht man die in einem Programm vorkommenden Parameter der Reihe nach durch. Mit der Taste SCROLL BACK (7) kann man die Parameter in umgekehrter Reihenfolge aufrufen. Sobald der gesuchte Parameter angezeigt wird, kann man seinen Wert mit den Tasten \triangle und ∇ (9) ändern.

• Alles Weitere auf S. 9, "DIE PROGRAMME UND PARAMETER".



Sobald man auf eine der Parameter-Tasten –PARAM, LEVEL, EQ oder INT PARAM— drückt, kann man die Parameter durch Drücken der Taste SCROLL BACK in umgekehrter Reihenfolge durchgehen. Wenn man die Taste PARAM (3), LEVEL (4), EQ (5) oder INT PARAM (6) drückt, ruft man die Parameter in der richtigen Reihenfolge auf. Außerdem dient SCROLL BACK noch zum Führen des Kursors (rückwärts) in mehreren Utility-Funktionen.

Taste EXT CTRL ASSIGN

Die dieser Taste zugeordnete Funktion erlaubt die Zuweisung jedes beliebigen Parameters (PARAM, LEVEL, EQ oder IN PARAM) zu einem externen Schweller, den man an die Buchse EXT CTRL/FOOT VOL 1 oder 2 (19) anschließt. Am besten verwendet man für diesen Aufgabenbereich einen Schweller FC7 von Yamaha.

• Alles Weitere auf S. 8.

Tasten und und vi

Diese Tasten dienen zur Werterhöhung bzw. verringerung (zuvor muß man jedoch eine der Tasten PARAM, EQ, LEVEL oder INT PARAM drücken). Diese Tasten haben auch eine Programmierfunktion in mehreren Utility-Programmen. Wenn man sie kurz drückt, erhöht man die Parameterwerte schrittweise. Man kann sie aber auch gedrückt halten, um einen Wert schneller zu erhöhen bzw. zu verringern. Halten Sie eine der beiden Tasten (△ oder ▽) gedrückt und betätigen Sie kurz die andere Taste (△ oder ♡), wird der Wert noch schneller geändert.

Tasten △ und ▽ (Programmanwahl)

Mit diesen Tasten hat man Zugriff auf die Speicher des SPX900. Mit der Taste 🛆 ruft man jeweils den nächsten und mit der Taste ∇ jeweils den vorigen Speicher auf. Um schnell zu einem weit entfernten Speicher zu gehen. kann man die entsprechende Taste auch gedrückt halten. • Alles Weitere auf S. 6.

Taste RECALL

Nach der Anwahl eines bestimmten Speichers mittels \triangle bzw. ∇ muß man ihn "eingeben", indem man man auf RECALL drückt.

· Alles Weitere auf S. 6.

Taste STORE

Mit dieser Taste speichert man seine editierten Programme in einem der User-RAMs (51~99).

• Nähere Einzelheiten auf S. 7.

Taste UTILITY

Mit dieser Taste hat man Zugriff auf die Utility-Funktionen, mit denen man das Schreiben der Programmnamen, das Schaffen eigener Erstreflexionsprogramme, MIDI-Steuerfunktionen und die Programmanwahl per Fußtaster programmiert.

• Siehe S. 27.

Taste TRIGGER

Die Taste TRIGGER erlaubt das "Auslösen" jedes beliebigen Effektprogramms des SPX900, das mit einer Trigger-Funktion ausgestattet ist. Die Reverb-Programme

enthalten beispielsweise eine triggerbare "Gate" (Abschaltfunktion) und die Freeze-Programme ermöglichen die Aufnahme und Wiedergabe des Kurzsamples. Die Taste TRIGGER hat dieselbe Funktion wie ein an die Buchse TRIGGER angeschlossener Fußtaster (siehe die RÜCKSEITE, (5)).

Taste BYPASS

Sobald Sie diese Taste drücken, wird der gegenwärtige Effekt umgangen, so daß das eingehende Signal "trocken" (=ohne Effekt) wieder ausgegeben wird. Auch die BYPASS-Funktion ist per Fuß steuerbar (siehe die RÜCKSEITE (3)).

· Alles Weitere auf S. 6.

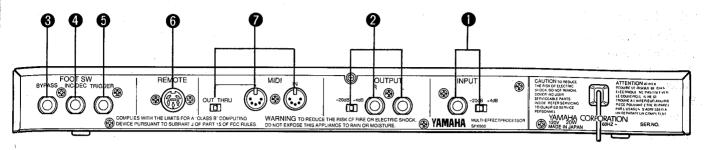
1 Display (Flüssigkristall)

Dieses Display faßt 16 Zeichen und bietet 2 Zeilen. Es dient zur Anzeige der Programmnamen (obere Zeile) und des aufgerufenen Parameters und Wertes (untere Zeile). Fehlermeldungen und Warnungen werden mal in einer, mal in beiden Zeilen wiedergegeben. "M" wird oben in der rechten Ecke angezeigt, wenn MIDI-Daten empfängen werden.

Programmnummeranzeige (LED)

Diese Anzeige ist zweistellig und dient zur Wiedergabe der Nummer des gegenwärtig aufgerufenen Programms (1~99). Bei der Anwahl eines neuen Programms blinkt diese Anzeige, was bedeutet, daß Sie noch auf RECALL drücken müssen, um das Programm einzugeben. Erst wenn sie leuchtet, ist das Programm einsatzbereit.

Eingangspegelanzeige


Dieser Meter ist eine LED-Kette, die aus sieben Elementen besteht. Es werden folgende Pegel angezeigt: -42dB, -36dB, -30dB, -24dB, -18dB, -12dB und -6dB.

Buchsen EXT CTRL/FOOTVOL 1 und 2

An diese Buchsen kann man einen Fußschweller FC7 von Yamaha (Sonderzubehör) anschließen und bestimmte Parameter oder Funktionen des SPX900 per Fuß steuern. Die steuerbaren Parameter wählt man mit der Funktion EXT CTRL ASSIGN (8).

Alles Weitere auf S. 8.

RÜCKSEITE

(amerikanisches und kanadisches Modell)

- INPUT Anschlußbuchsen und Pegelschalter
 Bei der Buchse handelt es sich um den Standard 1/4"Klinken typ. Mit dem Schalter wählt man entweder einen
 Nenneingangspegel von -20dB oder +4dB.
- **Buchsen OUTPUT L & R und Pegelschalter**Die Stereo-Ausgänge sind ebenfalls Standard 1/4"
 Klinken. Mit dem Pegelschalter wählt man entweder den Nennausgangspegel-20dB oder +4dB an.
- Buchse FOOT SW BYPASS
 Hier kann ein Fußtaster FC5 von Yamaha
 (Sonderzubehör) angeschlossen werden, mit dem man die BYPASS-Funktion ein- und ausschalten kann.

 Alles Weitere auf S. 6.
- 4 Buchse FOOT SW IN/DEC

 Hier kann ein Fußtaster FC5 von Yamaha
 (Sonderzubehör) angeschlossen werden, mit dem sich eine Reihe von Programmen aufrufen lassen. Die

eine Reihe von Programmen aufrufen lassen. Die Reihenfolge der Programme ist frei programmierbar (siehe den Utility-Modus, F.SW MEMORY RECALL RANGE).

· Alles Weitere auf S. 30.

6 Buchse FOOT SW TRIGGER

Hier kann ein Fußtaster FC5 von Yamaha (Sonderzubehör) angeschlossen werden, mit dem die Trigger-Funktionen des SPX900 ausgelöst werden können. Die Reverb-Programme enthalten beispielsweise eine triggerbare "Gate" (Abschaltfunktion) und die Freeze-Programme ermöglichen die Aufnahme und Wiedergabe des Kurzsamples. Ein an diese Buchse angeschlossener Fußtaster hat dieselbe Funktion wie die Taste TRIGGER (siehe die "FRONTPLATTE" (14)).

6 Buchse REMOTE

Das als Sonderzubehör erhältliche Fernbedienungsteil Yamaha RCX1 kann hier eingesteckt werden (Kabel mit RCX1 mitgeliefert) und ermögliche praktische Fernbedienung.

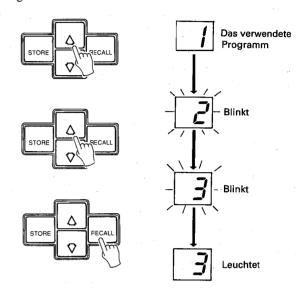
Buchsen MIDI IN und OUT/THRU

Wird die Buchse MIDI IN mit einem MIDIfähigen Gerät verbunden, lassen sich die Programme des SPX900 von dort aus aufrufen. Aber auch die Pitch Shift- und Pitch Change-Effekte, die Tonhöhe des Freeze-Programms sowie die Trigger-Funktion sind von einem anderen Gerät aus steuerbar. Befindet sich der OUT/THRU-Schalter in der THRU-Stellung, werden alle empfangenen MIDI-Daten unverändert an andere MIDI-Geräte weitergegeben. In der OUT-Stellung fungiert die zweite MIDI-Buchse als Ausgang, mit dem man den Inhalt der RAM-Speicher zu externen MIDIfähigen Geräten übertragen kann. So ließen sich die Daten zum Beispiel mit einem MIDI-Datenrekorder extern abspeichern. Die auf diese Weise abgelegten Daten können dann hinterher via MIDI IN wieder geladen werden (siehe "BULK OUT 1 & BULK OUT 2 auf S.29).

Aural Exciter® ist ein von Aphex Systems, Ltd eingetragenes Warenzeichen.

SPEICHERANORDNUNG

Der SPX900 enthält insgesamt 99 Speicher. Die Speicher 1~50 sind aber ROM-Speicher –d.h. Sie können nicht zur Datenablage verwendet werden. Ihre Daten lassen sich zwar editieren, aber die bearbeitete Fassung kann nur in einem der Speicher 51~99 untergebracht werden. Die Werksprogramme heißen:


neiben:	
1.REV1 HALL	26.SYMPHONIC
2.REV2 HALL&GATE	27. ADR-NOISE GATE
3.REV3 ROOM 1	28. PITCH CHANGE 1
4.REV4 ROOM 2	29. PITCH CHANGE 2
5.REV5 ROOM 3	30. PITCH CHANGE 3
6.REV6 WHITE ROOM	31. MONO PITCH
7.REV7 VOCAL 1	32.FREEZE
8.REV8 VOCAL 2	33.PAN
9.REV9 PLATE	34.TRIGGERED PAN
10.REV10 PLATE&GATE	35.COMPRESSOR
11.REV11 TUNNEL	36. DISTORTION
12.REV12 CANYON	37.EXCITER
13.REV13 BASEMENT	38.MULTI(ECH&REV)1
14.PERCUSSION ER	39. MULTI(ECH&REV)2
15.GATE REVERB	40.MULTI(CHO&REV)1
16.REVERSE GATE	41.MULTI(CHO&REV)2
17.PROGRAMMABLE ER	42. MULTI(CHO&REV)3
18.DELAY L, R	43.MULTI(SYM&REV)1
19. DELAY L, C, R	44.MULTI(SYM&REV)2
20.STEREO ECHO	45.MULTI(SYM&REV)3
21.STEREO FLANGE	46.MULTI(EXC&REV)1
22.CHORUS 1	47. MULTI(EXC&REV)2
23.CHORUS 2	48.PLATE+HALL
24.STEREO PHASING	49.ER+REV
25.TREMOLO	50.ECHO+REV

Die Speicher 51~99 dienen zur Ablage Ihrer Programme. Man nennt sie auch "RAM-Speicher".

ANWAHL EINES EFFEKTSPEICHERS

- Effektspeicher können nur aufgerufen werden, solange der SPX900 sich nicht im Utility-Modus befindet (d.h. die Diode der Taste UTILITY darf nicht leuchten). Falls die Diode der Taste UTILITY leuchtet, müssen Sie die Taste so oft drücken, bis sie erlischt.
- 2. Drücken Sie die Programmwahltaste △ oder ▽, um den nächsten bzw. den vorangehenden Speicher aufzurufen. Wenn Sie eine dieser Tasten gedrückt halten, erfolgt die Werterhöhung bzw. -verringerung nicht mehr schrittweise, sondern durchgehend. Neben der Nummer wird auch der Name jedes Speichers angezeigt. Die Speichernummer blinkt, um anzuzeigen, daß die Daten noch nicht geladen worden sind.

 Sobald der gesuchte Speicher angezeigt wird, müssen Sie die Taste RECALL betätigen. Die Nummerndiode blinkt nun nicht mehr,sondern leuchtet und das Programm kann eingesetzt werden.

UMGEHEN DES EFFEKTES

Um das Signal zeitweilig ohne Effekt zu hören, müssen Sie entweder die Taste BYPASS oder aber einen an die Buchse BYPASS angeschlossenen Fußtaster betätigen. Als Fußtaster verwendet man am besten einen FC5 von Yamaha. Sobald die Taste oder der Fußtaster betätigt wird, leuchtet die BYPASS-Diode, um anzuzeigen, daß der Effektspeicher umgangen wird. Daher liegt das "trockene" Signal an den Ausgängen an. Drücken Sie die Taste BYPASS (oder den Fußtaster) noch einmal,um den Effekt wieder einzuschalten. Die BYPASS-Diode erlischt und das Signal wird wieder mit dem Effekt versehen.

AUFRUFEN UND EDITIEREN DER PROGRAMM-PARAMETER

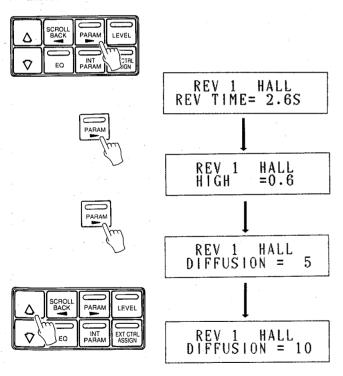
Alle Programme des SPX900 bestehen aus vier Parametergruppen, die man über folgende Tasten erreicht:

TASTE	FUNKTIONEN
PARAM	Die Haupt-Effektparameter eines Programms.
	Die Parameter richten sich nach dem
	Programm-Typ.
LEVEL	Die Parameter BALANCE und OUT LVL der
	Programme.
EQ	Die Parameter des Entzerrers und Dynamik-
	Filters.
INT PARAM	Parameter "für die Feinheiten". Sie richten
	sich nach dem Programmtyp.

Um eine Parametergruppe aufzurufen, muß man die ihr zugeteilte Taste drücken. Drücken Sie dieselbe Taste danach noch einmal, wird der zweite Parameter dieser Gruppe aufgerufen, danach der dritte usw. Mit SCROLL BACK geht man die Parameter in umgekehrter Reihenfolge durch. Sagen wir, Sie haben zuerst die Taste LEVEL gedrückt und betätigen danach die Taste SCROLL BACK. Hiermit würden Sie die Parameter in umgekehrter Reihenfolge durchgehen:

$BALANCE \rightarrow OUT\ LVL \rightarrow BALANCE \rightarrow usw.$

Um einen Parameter aufzurufen und zu editieren, muß man:

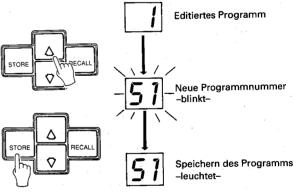

- 1. Das Programm aufrufen und auf RECALL drücken.
- Die Taste drücken, mit der man Zugriff auf die gewünschte Parametergruppe hat (PARAM, LEVEL, EQ oder INT).
 Danach erscheint der Name des ersten Parameters dieser Gruppe in der unteren Zeile des Displays.
- 3. Mit den Tasten

 und

 kann man den Wert ändern. Mit

 erhöht man den Parameterwert und mit

 verringert man ihn. Halten Sie eine dieser beiden Tasten gedrückt, wird der Wert kontinuierlich erhöht bzw. verringert. Die schnellste Art einen Parameter zu ändern, ist das Drücken einer Wertänderungstaste und das kurze Antippen der anderen.



Vergessen Sie nicht, das editierte Programm zu speichern, bevor Sie ein anderes aufrufen, um die Daten nicht zu verlieren. Editierte Programme müssen in dem RAM-Speicher (51~99) untergebracht werden. Um ein Programm zu speichern, müssen Sie die Taste STORE drücken (s.u.).

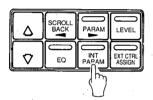
SPEICHERN EINES PROGRAMMES

Um ein Effektprogramm zu speichern, muß man folgendermaßen vorgehen:

- 2. Sobald die Bearbeitung abgeschlossen ist, können Sie mit den Tasten △ und ▽ einen Speicher im Bereich 51~99 aufrufen, und dessen Name wird angezeigt. Drücken Sie iedoch AUF KEINEN FALL die Taste RECALL.
- 3. Drücken Sie danach die Taste STORE und das editierte Programm wird gespeichert. Der Name des Effektes wird angezeigt. –Übrigens besteht die Möglichkeit, auch den Namen eines Programms zu editieren, indem man in den Utility-Modus wechselt und die Funktion TITLE EDIT aufruft (siehe S. 27). Die Speichernummer blinkt nun nicht mehr, sondern leuchtet, um anzuzeigen, daß das neue Programm unter der angezeigten Nummer abgespeichert wurde.

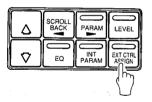
HINWEIS:

Es IST UNMÖGLICH, neue Programme in einem der Speicher zwischen 1 und 50 unterzubringen. Deshalb erscheint manchmal die Meldung "***READ ONLY***" (nur lesen).

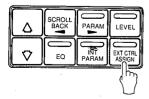

HINWEIS: -

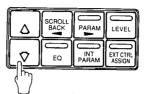
Es ist ohne weiteres möglich, das neu erstellte und gerade erst gespeicherte (51~99) Programm weiter zu editieren. Vergessen Sie auch hier nicht, das Programm in einem anderen (oder demselben) Speicher unterzubringen, bevor Sie einen anderen Effekt aufrufen. Wählen Sie einen RAM-Speicher (51~99) an und drücken Sie die Taste STORE.

BELEGUNG DER EXTERNEN STEUERELEMENTE


Es können jeweils zwei Parameter des SPX900 mit zwei voneinander unabhängigen Steuerelementen bedient werden. Hierfür muß man zwei Fußschweller (am besten FC7 von Yamaha) an die Buchsen EXT CTR/FOOT VOL1 und 2 auf der Frontplatte anschließen. Mit der Taste EXT CTRL ASSIGN hat man Zugriff auf die Parameter, die man den Schwellern zuordnen kann. Die Belegungen der externen Steuerelemente werden mit den übrigen Programm-Parametern zusammen in einem RAM-Speicher (51~99) untergebracht und werden mit den übrigen Parametern wieder aufgerufen.

- 1. Rufen Sie das gewünschte Effektprogramm auf.
- Wählen Sie den Parameter an, der dem Schweller zugeordnet werden soll (PARAM, LEVEL, EQ oder INT PARAM sind zuteilbar).


3. Drücken Sie die Taste EXT CTRL ASSIGN. Der Name des Programms wird weiterhin in der oberen Display-Zeile angezeigt. In der unteren Zeile erscheint einer der folgenden Parameter:


REV1 HALL FVOL1 REV TIME

Mit der Taste EXT CTRL ASSIGN geht man die Parameter der Reihe nach durch. Mit SCROLL BACK geht man die Parameter in umgekehrter Reihenfolge durch.

4. Um den den Schweller EXT CTRL/FOOT VOL1 oder EXT CTRL/FOOT VOL2 mit der eingestellten Parameter-Funktion zu belegen, müssen Sie wiederholt auf EXT CTRL ASSIGN oder SCROLL BACK drücken, um die Anzeige "FVOL1 XXXXXXXXX" oder "FVOL2 XXXXXXXX" aufzurufen.

REV1 HALL FVOL2 BALANCE 5. Drücken Sie entweder die Parametertaste △ oder ▽, um den angewählten Parameter dem angezeigten Schweller (FVOL1 oder FVOL2) zuzuordnen.

REV1 HALL FVOL2 TRG. LEVEL

6. Mit den Parametern "MIN" und "MAX" stellt man den Regelbereich des Schwellers ein. Sagen wir, der zugeordnete Parameter hat einen Bereich von 0 bos 100%. Würden wir als MIN-Wert 20 als MAX-Wert 80 einstellen, so könnten wir den Parameter zwischen 20% und 80% beeinflussen.

- HINWEIS:-

Es brauchen nicht beide Schweller zugeordnet zu werden, obwohl das ohne weiteres möglich ist. Sie lassen sich zwei verschiedenen Parametern desselben Programms zuordnen.

HINWEIS: -

Vergessen Sie nicht, die Schwellerzuordnung vor der Anwahl eines anderen Programms zu speichern; das geht natürlich nur mit dem betreffenden Programm zusammen (Speicher 51~99) und indem mandie Taste STORE drückt.

HINWEIS:

Man kann die Parameter auch mit MIDI-Meldungen steuern. Siehe "MIDI CTRL ASSIGN" auf S.29.

VORSICHT! -

Wenn Sie den Regelbereich angewählt und in dem Programm abgelegt haben, beachten Sie, daß sich die voreingestellten Werte der zugeordneten Parameter innerhalb des Regelbereichs befinden.

Wenn Sie den Regelbereich angewählt haben, bestätigen Sie die Werte der "MIN" und "MAX" Parameter und beachten Sie, daß die voreingestellten Werte zwichen beiden Werten liegen.

Falls sich die voreingestellten Werte außerhalb des Regelbereichs befinden, wird der Schweller bei einem RECALL-Vorgang keinen Effekt auslösen.

3. DIE PROGRAMME UND PARAMETER

PARAMETER, DIE IN ALLEN PROGRAMMENVORKOMMEN

LEVEL-RARAMETER (Anwahl mit oler Taste LEVEL)

Balance Effekt-Trocken (BALANCE): 0 - 100%

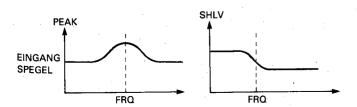
Mit diesem Parameter regelt man die Balance zwischen dem Eingangs- und dem Effektsignal. Bei einer Einstellung von 100% ist nur noch das Effektsignal hörbar, wohingegen man bei einer Einstellung dieses Parameterwertes auf 0% nur das trockene Signal hört. Beträgt der Wert 50%, ist das Verhältnis Trocken-Effekt ausgewogen.

Ausgangspegel des Effektes (OUT LVL): 0 — 200%

Hiermit regelt man den Ausgangspegel des Effektes ein, um den Pegel aller Effekte in ungefähr gleich einstellen zu können.

LEVEL-PARAMETER DER DUAL EFFECT PROGRAMME (48 — 50)

Die LEVEL-Parameter der Doppel effekt-Programme (48—50) sind zwar dieselben wie die der übrigen Programme, nur sind sie jeweils doppelt vertreten, nämlich für den linken und rechten Kanal getrennt:


BALANCE 1= Balance des 1 Effekts BALANCE 2=Balance des 2 Effekts OUT LVL 1=Ausgangspegel des 1 Effekts OUT LVL 2= Ausgangspegel des 2 Effekts

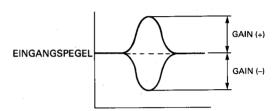
EQ-PARAMETER (Anwahl mit der Taste EQ)

Beim Drücken der Taste EQ haben Sie die Wahl zwischen drei Möglichkeiten: "OFF" (Werkseinstellung), "EQ" (Parametrischer Zweiband-Equaliser) oder "D.FLT" (Dynamik-Filterbetrieb). Den gewünschten Betrieb stellt man mit den Parametertasten \triangle und \bigtriangledown ein. Im EQ-Betrieb hat man Zugriff auf einen parametrischen Zweiband-Entzerrer, während man bei der Anwahl von "D.FLT" einen Digitalfilter verwenden kann, dessen Wirkung mit dem Niederfrequenzoszillator des SPX900.

DIE PARAMETER DES EQ-BETRIEBES

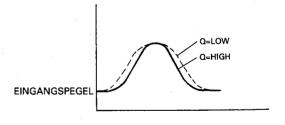
Charakter des Tiefenreglers (LOW EQ): PEAK, SHLV Charakter des Höhenreglers (HIGH EQ): PEAK, SHLV Mit diesem Parameter wählt man, ob der entsprechende Filter eine Glocken- (PEAK) oder Kuhschwanzcharakteristik (SHLV) aufweisen soll.

Frequenz des Tiefenreglers (LOW FRQ): 32Hz — 2.2kHz


Frequenz des Höhenreglers (HIGH FRQ): 500Hz — 16kHz

Mit diesem Parameter bestimmt man die Mittelfrequenz des jeweiligen Entzerrerbandes. Haben Sie "SHLV" eingestellt, bestimmt man mit FRQ die Übergangsfrequenz statt der Mittelfrequenz.

Anhebung/Absenkung der Tiefen (LOW GAIN): -15 — +15dB


Hier stellt man ein, wie stark die Tiefen oder Höhen hervorgehoben oder unterdrückt werden sollen.

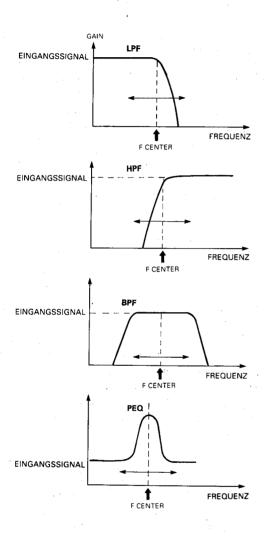
Bandbreite der Tiefen (LOW Q): 0,1 — 5,0 (nur für

Bandbreite der Höhen (HIGH Q): 0,1 — 5,0 (nur für PEAK)

Mit diesen Parametern legt man die Bandbreite des Entzerrer-Bandes fest. Der Höchstwert von 5,0 bedeutet die geringste Bandbreite (schmalstes Entzerrungsband) und der Minimalwert 0,1 die größte (breitestes Entzerrungsband). Der Q-Wert kann jedoch nur für Entzerrer mit Glockencharakteristik (PEAK) verwendet werden.

• DIE PARAMETER DES D.FLT-BETRIEBES

Filtertyp (FLT TYPE): LPF, HPF, BPF, PEQ


Hiermit stellt man das Verhaltensmuster des Filters ein:

LPF=Tiefpaßfilter

HPF= Hochpaßfilter

BPF= Bandpaßfilter

PEQ=Parametrischer Equaliser

Mittelfrequenz (F CENTER): 32Hz — 16kHz

Hiermit stellt man die Grenzfrequenz des Dynamik-Filters ein.

Filtersteilheit (F DEPTH): 0 — 8 Oktaven

Die maximale Steilheit des Dynamik-Filters.

Filterintensität (GAIN): -18, -12, -6, 6, 12, 18dB (nur wenn FLT TYPE=PEQ)

Die Stärke des Filters, wenn "PEQ" eingestellt wurde. Negative Werte bewirken einen Kerbfilter, positive Werte einen Glockenfilter.

Bandbreite (Q): LOW, HIGH

Die Bandbreite des Dynamikfilters.

Frequenz des LFOs (LFO FRQ): 0.1 — 10.0 Hz

Die Geschwindigkeit, mit der LFO den Filter verschiebt (wenn "LFO" angewählt wurde).

DIE EQ-PROGRAMME DER DUAL EFFECT

PROGRAMME (48— 50)

Die Entzerrer-Werte der DOPPEL effekt-Programme sind genau dieselben wie die der übrigen Programme. Die Entzerrer-Werte können aber für jeden Effekt getrennt eingestellt werden.

1 LOW EQ = Tiefenregler des 1 Effekts

1 LOW F = Frequenz des Tiefenreglers des 1 Effekts

1 LOW G = Anhebung/Absenkung der Tiefen für den 1 Effekt

1 LOW Q = Bandbreite des Tiefenreglers für den 1

Effekt

1 HI EQ = Höhenregler des linken Effekts

1 HI F = Frequenz des Höhenreglers des 1

1 HIF = Frequenz des Höhenreglers des 1
Effekts
1 HIG = Anhebung/Absenkung der Höhen fi

1 HI G = Anhebung/Absenkung der Höhen für den 1 Effekt

1 HI Q = Bandbreite des Höhenreglers für den 1 Effekt

2 LOW EQ = Tiefenregler des 2 Effekts

2 LOW F = Frequenz des Tiefenreglers des 2

Effekts
2 LOW G = Anhebung/Absenkung der Tiefen für den

2 Effekt 2 LOW Q = Bandbreite des Tiefenreglers für den 2

Effekt
2 HI EQ = Höhenregler des 2 Effekts

2 HI F = Frequenz des Höhenreglers des 2

Effekts

2 HIQ

2 HI G = Anhebung/Absenkung der Höhen für den 2 Effekt

= Bandbreite des Höhenreglers für den 2

Effekt

DIE REVERB-PROGRAMME

- 1.REV1 HALL
- 2 . REV2 HALL&GATE
- 3.REV3 ROOM 1
- 4 . REV4 ROOM 2
- 5.REV5 ROOM 3
- 7.REV7 VOCAL 1
- 8.REV8 VOCAL 2
- 9 . REV9 PLATE
- ■10.REV10 PLATE&GATE

Unter "Reverb" (zu Deutsch: "Nachhall") versteht man die Rauminformation, mit der Naturklänge versehen werden. Der SPX900 bietet fünf verschiedene Nachhalltypen an, die natürliche Umgebungen simulieren: Ein Saal, ein Zimmer, eine Einstellung, die besonders für Gesang geeignet ist, künstlicher Nachhall, der mit einer Platte generiert wird.

DIE PARAMETER DER PARAM-TASTE

Nachhalldauer (REV TIME):

0,3 — 480,0 Sekunden (REV1,REV2,REV7,REV8) 0,1 — 480,0 Sekunden (REV3,REV 4,REV5, REV9, REV10)

Die Zeit, die verstreicht, bis der Nachhallpegel von 1kHz um 60dB gesunken ist. In einer natürlichen Umgebung richtet sich die Dauer nach mehreren Faktoren: Raumgröße, Architektur, Reflexionen usw.

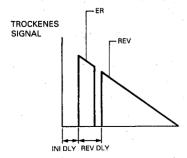
Höhenanteil des Reverb-Signals (HIGH): 0,1 — 1,0

Natürlicher Nachhall ist nicht für alle Geräusche derselbe: Je höher nämlich das Signal, desto mehr wird er von den Wänden, Möbeln und sogar von der Luft verschluckt. Mit diesem Parameter programmiert man die Nachhalldauer im Höhen- und Tiefenbereich.

Verteilung (DIFFUSION): 0 — 10

Die Komplexität der Reflexionen, die den Nachhall ausmachen, richtet sich nach der Architektur eines Raumes und seinem Inhalt. Beträgt der Wert dieses Parameters 0, ist das Reverb-Signal am transparentesten. Wurde der Höchstwert eingestellt, ist der Nachhall viel dichter.

Verzögerung (INI DLY): 0,1 — 200,0 mSek.


Die Verzögerung zwischen dem trockenen Signal und dem Nachhall. Vor allem für Gesang und Percussion-Instrumente interessant.

Frequenz des Hochpaßfilters (HPF FRQ.): THRU, 32Hz — 1.0kHz

Die Grenzfrequenz, unterhalb welcher die Tiefen des Reverb-Signals gefiltert werden. Wenn "THRU" eingestellt wird, ist der Hochpaßfilter ausgeschaltet.

Frequenz des Tiefpaßfilters (LPF FRQ.): 1,0 — 16kHz, THRU

Die Grenzfrequenz, oberhalb welcher die Höhen des Reverb-Signals gefiltert werden. In der "THRU"-Stellung ist der Tiefpaßfilter ausgeschaltet.

DIE PARAMETER DER TASTEINT INT PARAM

Balance zwischen Erstreflexionen und Nachhall (ER/REV BAL): 0 — 100%

Mit diesem Parameter programmiert man das Pegelverhältnis zwischen den Erstreflexionen und dem eigentlichen Nachhall. Beträgt der Wert 100%, hört man nur die Erstreflexionen. Bei einer Einstellung auf 0% wird nur der Nachhall ausgegeben. Eine Einstellung von 50% bedeutet ein ausgewogenes Verhältnis zwischen den Erstreflexionen und dem Nachhall.

Nachhallverzögerung (REV DLY): 0,1 — 100,0 mSek

Die Zeitspanne zwischen den Erstreflexionen -die noch nicht so zahlreich sind wie der Nachhall- und dem Nachhall.

Dichte (DENSITY): 0 - 4

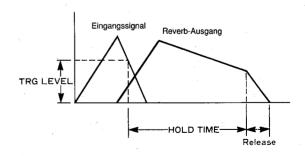
Auch die Dichte der Reflexionen (die Zeitintervalle zwischen den einzelnen Reflexionen) läßt sich programmieren. Beträgt der Wert 1,so ist die Dichte am geringsten und der Nachhall klingt "geräumiger".

Bei dem Höchstwert (4) ist der Nachhall weitaus dichter.

Trigger-Pegel (TRG.LEVEL): 0 — 100

Der Pegel, den das Eingangssignal haben muß, damit sich die "Gate" öffnet. Wurde der Höchstwert (100%) eingestellt, wird der Nachhall nur von extrem lauten Signalen ausgelöst. Bei einer Einstellung auf 1% hingegen wird der Nachhall selbst durch schwache Signale getriggert.

Trigger-Verzögerung (TRG.DLY):-100,0 — +100,0 mSek


Das Zeitintervall zwischen dem Auslösen der Gate und dem Moment, wo sie sich öffnet.

Haltedauer (HOLD): 1 — 24.000 mSek

Die Dauer, die die Gate geöffnet bleiben soll.

Ausklingrate (RELEASE): 3 — 24.000 mSek

Die Geschwindigkeit, mit der sich die Gate nach dem Verstreichen der Haltedauer (HOLD) wieder schließt.

MIDI-Auslöser (MIDI TRG): OFF, ON

Haben Sie für diesen Parameter ON eingestellt, wird die Gate durch eine vom MIDIfähigen Keyboard kommenden Note-An-Meldung getriggert. Diese Note-An-Meldung wird durch das Drücken einer oder mehrerer Manualtasten generiert.

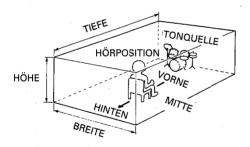
-HINWEIS:-

Dieser Effekt kann auch mit der Taste TRIGGER auf der Gerätevorderseite bzw. mit einem an die Buchse TRIGGER auf der Geräterückseite angeschlossenen Fußtaster getriggert werden.

DIE ECHO ROOM REVERB-PROGRAMME

- 6 . REV6. WHITE ROOM
- 11. REV11. TUNNEL
- 12. REV12. CANYON
- 13. REV13. BASEMENT

Das ist ein spezieller Nachhalltyp mit weitgehender Programmiermöglichkeit der Raumabmessungen und anderen Parametern.


DIE PARAMETER DER PARAM-TASTE

Nachhalldauer (REV TIME): 0,3 — 99,0Sekunden

Die Zeit, die verstreicht, bis der Nachhallpegel von 1kHz um 60dB gesunken ist. In einer natürlichen Umgebung richtet sich die Dauer nach mehreren Faktoren: Raumgröße, Architektur, Reflexionen usw.

Breite des Raumes (WIDTH): 0,5 — 34,0 m Höhe des Raumes (HEIGHT): 0,5 — 34,0 m Tiefe des Raumes (DEPTH): 0,5 — 34,0 m

Mit diesen Parametern programmiert man die Raumdimensionen in Metern. Je größer der Raum, desto länger der Nachhall.

Wandwinkel (WALL VARY): 0 - 30

Mit diesem Parameter kann man "den Winkel der Wände programmieren". Der Wert 1 bedeutet, daß die Wände parallel zueinander sind. Höhere Werte bedeuten spitzere Winkel, so daß sich auch der Klang des Nachhalls ändert.

Standort des Hörers (LIS.POSI.): FRONT, CENT, REAR

Hiermit "setzt" man den Hörer entweder ganz vorne, in die Mitte oder ganz hinten in den Saal/Raum, was sich natürlich auf den Hallanteil des Signales niederschlägt.

Höhenanteil des Reverb-Signals (HIGH): x0,1 — x1,0

Natürlicher Nachhall ist nicht für alle Geräusche derselbe: Je höher nämlich das Signal, desto mehr wird er von den Wänden, Möbeln und sogar von der Luft verschluckt. Mit diesem Parameter programmiert man die Nachhalldauer im Höhen- und Tiefenbereich.

Verteilung (DIFFUSION): 0 — 10

Die Komplexität der Reflexionen, die den Nachhall ausmachen, richtet sich nach der Architektur eines Raumes und seinem Inhalt. Beträgt der Wert dieses Parameters 0, ist das Reverb-Signal am transparentesten. Wurde der Höchstwert eingestellt, ist der Nachhall viel dichter.

Verzögerung (INI DLY): 0,1— 200,0 mSek.

Die Verzögerung zwischen dem trockenen Signal und dem Nachhall. Vor allem für Gesang und Percussion-Instrumente interessant.

Frequenz des Hochpaßfilters(HPF FRQ.): THRU, 32 Hz — 1,0kHz

Die Grenzfrequenz, unterhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

Frequenz Tiefpaßfilters(LPF FRQ.): 1,0— 16kHz, THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

Feineinstellung von WIDTH: -100 — +100

Hiermit programmiert man den mit WIDTH festgelegten Wert als Bezugspunkt (0) und nimmt Feineinstellungen für diesen Wert vor.

Feineinstellung von HEIGHT: -100 - +100

Hiermit programmiert man den mit HEIGHT festgelegten Wert als Bezugspunkt (0) und nimmt Feineinstellungen für diesen Wert vor.

Feineinstellung von DEPTH: -100 - +100

Hiermit programmiert man den mit DEPTH festgelegten Wert als Bezugspunkt (0) und nimmt Feineinstellungen für diesen Wert vor.

Feineinstellung von W.VARY: -100 - +100

Hiermit programmiert man den mit WIDTH, HEIGHT, DEPTH und W.VARY festgelegten Wert als Bezugspunkt (0) und nimmt Feineinstellungen für diese Werte vor.

W. DECAY= RT x 0,1 — 10,0

Simuliert die Beschaffenheit der Seitenwände und stellt einen Koeffizienten der REV TIME dar. Je absorbierender die Seitenwände, desto kürzer die von ihnen generierte Halldauer. Gilt für WIDTH.

H.Decay= RT x 0,1 — 10,0 D.Decay= RT x 0,1 — 10,0

Simuliert die Beschaffenheit der Vorder- und Rückwand und

stellt einen Koeffizienten der REV TIME dar. Je absorbierender die Vorder- und Rückwand, desto kürzer die von ihnen generierte Halldauer. Gilt für DEPTH.

DIE PARAMETER DER TASTE INT PARAM

Die Parameter der Taste INT PARAM sind ähnlich wie die Reverb-Programme.

DIE ERSTREFLEFXIONS-PROGRAMME

- 14. PERCUSSION ER
- 15. GATE REVERB
- 16. REVERSE GATE
- 17. PROGRAMMABLE ER

Die hier erwähnten Effekte bestehen vor allem aus "Early Reflections" -den Reflexionen, die vor dem eigentlichen Nachhall entstehen.

DIE PARAMETER DER TASTE PARAM

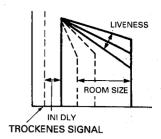
Erstreflexionsart (TYPE):

Feder.

PERCUSSION ER: S-HALL, L-HALL, RANDOM,
REVERSE, PLATE, SPRING
PROGRAMMABLER ER: USER-A, USER-B,
USER-C, USER-D
GATE REVERB & REVERSE GATE: TYPE A, B

Mit dem Programm PERCUSSION ER hat man Zugriff auf sechs verschiedene Erstreflexionsmuster. Mit S-HALL erzielt man die Erstreflexionen eines kleinen Saales, mit L-HALL diejenigen eines großen Saales. RANDOM generiert ein Zufallsmuster, REVERSE hingegen einen Erstreflexionsmuster, dessen Pegel zu- statt abnimmt. Dieser Effekt klingt dann so, als würde man auf Band aufgenommen Nachhall rückwärts abspielen. PLATE generiert die Erstreflexionen einer Platte und SPRING das Muster einer

Das Programm PROGRAMMABLE ER bietet Zugriff auf vier Benutzer-Programme: USER-A, USER-B, USER-C, USER-D. Diese User-Muster programmiert man im Utility-Modus (siehe die Funktion USER ER EDIT" auf S. 27).


Die Gate-Programme enthalten jeweils zwei Typen: Typ A und Typ B.

Raumgröße (ROOM SIZE): 0,1 — 25,0

Die Zeitintervalle zwischen den einzelnen Reflexionen. Diese Intervalle sind proportional zu der Größe eines Raumes.

Lebendigkeit (LIVENESS): 0 - 10

Mit diesem Parameter bestimmt man, ob ein Raum "lebendig" (d.h. stark reflektierend) oder "schalltot" sein soll.

Transparenz (DIFFUSION): 0 — 10

Die Komplexität der reflektierten Schallwellen richtet sich nach der Architektur des Raumes. Mit dem SPX900 kann man diese Verteilung der Wellen nachvollziehen. Bei der Einstellung des Minimalwertes 0 ist der Klang am transparentesten. Je höhe der Wert, desto komplexer das Erstreflexionsmuster.

Anfängliche Verzögerung (INI DLY): 0,1 — 400,0 mSek

Die Zeitspannen zwischen dem Erklingen des trockenen Signals und dem Beginn der Erstreflexionen.

Frequenz des Hochpaßfilters (HPF FRQ): THRU, 32 Hz — 1.0kHz

Die Grenzfrequenz, unterhalb welcher die Signale gefültert werden.

Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

Frequenz des Tiefpaßfilters (LPF FRQ): 1,0 — 16kHz, THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

PARAMETER DER TASTE INT PARAM

Zahl der Erstreflexionen (ER NUMBER): 1 — 19

Hiermit stellt man die Zahl der Erstreflexionen in einem Bereich zwischen 1 und 19 ein.

Verzögerung der Rückkopplung (FB DELAY): 0,1 — 1000,0 mSek

Verstärkung der Rückkopplung (FB GAIN): –99 — +99%

Höhenanteil der Rückkopplung (FB HIGH): 0,1 — 1,0

Mit dem FEEDBACK-Parameter kann man den Klang der Erstreflexionen andicken und/oder verlängern. In diesem Fall generieren die Erstreflexionen ihrerseits noch einmal Erstreflexionen. Mit FB DELAY programmiert man die Zeit, die zwischen den ursprünglichen und den neuen Erstreflexionen verstreichen soll. Kurze FD DELAY-Werte bedeuteten einen dichteren Erstreflexionsklang. Längere FB DELAY-Werte generieren sehr lange oder sich wiederholende

Erstreflexionen. FB GAIN bestimmt, wie oft (d.h. wie lang) die Erstreflexionen wiederholt werden. FB HIGH legt den Anteil der Höhen fest, die wiederholt werden sollen. Je kleiner der Wert, desto weniger Höhen sind in dem FB GAIN-Signal enthalten. Dadurch werden die im Signal enthaltenen Höhen immer schwächer.

Dichte (DENSITY):

PERCUSSION ER: 1—3
PROGRAMMABLE ER, GATE REVERB, REVERSE
GATE: 0 — 3

Mit DENSITY programmiert man die Dichte der Reflexionen (d.h. das Zeitintervall zwischen den einzelnen Reflexionen). Beträgt der Wert 0 oder 1, so ist die Dichte gleich Null bzw. sehr gering. Beträgt der Wert hingegen 3, so ist der reflektierte Schall am dichtesten.

DIE DELAY-PROGRAMME

- 18 DELAY, L, R
- 19 DELAY, L, C, R

Bei diesen Programmen handelt es sich um ein äußerst leistungsstarkes Delay, dessen Verzögerungen für den linken und rechten Kanal einzeln programmiert werden können. DELAY L,C,R bietet außerdem einen einstellbaren Mitten Kanal.

PARAMETER DER TASTE PARAM

Verzögerung links (Lch DLY): 0,1—1480,0 mSek Verzögerung rechts (Rch DLY): 0,1— 1480,0 mSek Verzögerung Mitte (Cch DLY): 0,1— 1480,0 mSek (Nur bei DELAY L,C,R)

Die Zeit, die zwischen dem trockenen Signal und der ersten Wiederholung verstreicht. Dieser Wert ist für alle drei Kanäle getrennt einstellbar.

Pegel Mitte: (Cch LVL): -200 — +200% (Nur bei DELAY L,C,R)

Hier stellt man die Lautstärke der Wiederholung des mittleren Kanals ein.

PARAMETER DER TASTE INT PARAM

Verzögerung 1. Rückkopplung (FB1 DLY): 0,1 — 1480,0mSek

Verzögerung 2. Rückkopplung (FB2 DLY): 0,1 — 1480,0mSek

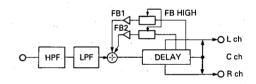
Das Delay-Programm ist mit zwei Rückkopplungs-Schleifen ausgestattet. Hier programmiert man die Zwischenräume zwischen zwei Wiederholungen.

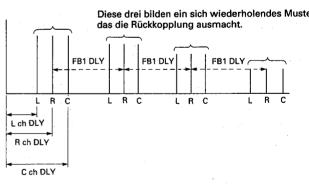
Verstärkung 1. Rückkopplung (FB1 GAIN): -99% — +99%

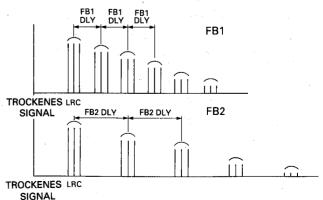
Verstärkung 2. Rückkopplung (FB2 GAIN): -99% — +99%

Der Anteil des Signals, der noch einmal zum Eingangsprozessor gesendet wird. Je höher dieser Wert, desto größer die Anzahl Wiederholungen der entsprechenden Rückkopplungs-Schleife.

Höhenanteil der Rückkopplung (HIGH): x0,1 — x1,0 HIGH legt den Anteil der Höhen fest, die wiederholt werden sollen. Je kleiner der Wert, desto weniger Höhen sind in dem FB GAIN-Signal enthalten. Dadurch werden die im Signal enthaltenen Höhen immer


Frequenz des Hochpaßfilters (HPF FRQ.): THRU, 32 Hz — 1,0kHz

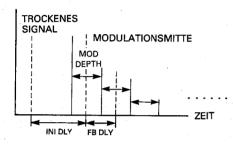

Die Grenzfrequenz, unterhalb welcher die Signale gefiltert werden.


Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

Frequenz des Tiefpaßfilters (LPF FRQ.): $1,0-16 \mathrm{kHz},$ THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

DAS ECHO-PROGRAM


20. STEREO ECHO

Das Echo und die Verzögerung können für beide Kanäle getrennt programmiert werden.

DIE PARAMETER DER TASTE PARAM

Verzögerung links (LFB DLY): 0,1— 740,0 mSek Verzögerung rechts (RFB DLY): 0,1— 740,0 mSek

Nach der anfänglichen Verzögerung, die man mit INI DLY programmiert, bestimmen diese beiden Parameter die Zeit zwischen den weiteren Wiederholungen.

Rückkopplung links (L ch FB): -99 — +99% Rückkopplung rechts (R ch FB): -99 — +99%

Der Signalanteil des rechten und/oder linken Kanals, der noch einmal zum Eingangsprozessor gesendet wird. Je höher die FEEDBACK-Einstellung, desto zahlreicher die Wiederholungen des entsprechenden Kanals.

Höhenanteil der Rückkopplung (HIGH): x0,1 — x1,0

FB HIGH legt den Anteil der Höhen fest, die wiederholt werden sollen. Je kleiner der Wert, desto weniger Höhen sind in dem FB GAIN-Signal enthalten. Dadurch werden die im Signal enthaltenen Höhen immer Schwächer.

PARAMETER DER TASTE INT PARAM

Anfängliche Verzögerung links (L INI DLY): 0,1 — 740,0mSek

Anfängliche Verzögerung rechts (R INI DLY): 0,1—740.0mSek

Die Zeitspanne zwischen dem Erklingen des trockenen Signals und dem Beginn der Wiederholungen.

Frequenz des Hochpaßfilters (HPF FRQ.): THRU, 32 Hz—1,0kHz

Die Grenzfrequenz, unterhalb welcher die Signale gefiltert werden.

Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

Frequenz des Tiefpaßfilters (LPF FRQ.): 1,0 — 16kHz, THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

DIE MODULATIONS-PROGRAMME

- 21. STEREO FLANGE
- 22. CHORUS 1
- 23. CHORUS 2
- 24. STEREO PHASING
- 25. TREMOLO
- 26. SYMPHONIC

Mit den Flanger-Programmen erzielt man einen wirbelnden Effekt, der den Klang eines Instrumentes etwas andickt. Chorus entsteht durch das Verzögern ein und desselben Signals, woraus sich ein "Kammfilter-Effekt" ergibt.

Unter Phasing versteht man eine "leichtere Version" des Flanging-Effektes.

Das Tremolo entsteht anhand desselben Prinzips wie der Flanging-Effekt. Der Klang ist jedoch "großartiger". Mit dem Symphonic-Effekt macht man einen Klang reicher und erweckt so den Eindruck eines Ensembles.

DIE PARAMETER DER TASTE PARAM

Bitte beachten Sie, daß das STEREO PHASING-Programm nicht mit einem FB GAIN-Parameter ausgestattet ist und daß TREMOLO und SYMPHONIC nur die Parameter MOD FRQ und MOD DEPTH enthalten.

Modulations-Frequenz (MOD FRQ.): 0,05Hz — 40,0HzDie Geschwindigkeit der Modulation, d.h. des Effektes.

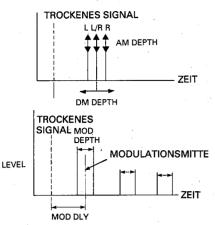
Modulations-Tiefe (1,2) (MOD DEPTH): 0% — 100%Der Verzögerungsgrad der Zeitvariation, d.h. die Tiefe des Effektes.

Verzögerung der Modulation (1,2)(MOD DLY): 0,1 — 100.0mSek

Die Zeit, die zwischen dem Erklingen des trockenen Signals und dem Einsetzen der Modulation verstreicht.

Phasing (PHASE): -180,0deg — +180,0deg (STEREO FLANGE). Hiermit stellt man die Phase zwischen der

(STEREO FLANGE). Hiermit stellt man die Phase zwischen der ersten und zweiten Modulation ein.


Vertärkung der Rückkopplung (FB GAIN): 0% — 99%

Der Signalanteil des Flangers, der noch einmal dem Eingangsprozessor zugeführt wird. Je höher der GAIN-Wert, desto "stärker" ist der Effekt und desto länger die Ausklingrate.

Verzögerungszeit der Modulationstiefe (DM DEPTH): 0% — 100%

(CHORUS effekt) Die Breite der Bewegung zwischen dem linken und rechten Kanal.

Amplitudenmodulations-Tiefe (AM DEPTH): 0% — 100% (TREMOLO effekt) Die Breite der Amplitudenmodulation.

PARAMETER DER TASTE INT PARAM

Frequenz des Hochpaßfilters (HPF FRQ.): THRU, 32 Hz — 1,0kHz

Die Grenzfrequenz, unterhalb welcher die Signale gefiltert werden.

Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

Frequenz des Tiefpaßfilters (LPF FRQ.): 1,0 — 16kHz, THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden.

Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

NOISE GATE

27. NOISE GATE

Dies Programm ist eine "Gate" ("Kennschaltung"), mit der man das Signal an jedem beliebigen Punkt unterdrücken kann. Mit diesem Programm läßt sich nur ein kleiner Teil eines Signales wiedergeben. Der GATE-Effekt kann auch umgekehrt werden, wobei die Lautstärke nach dem Trigger allmählich erhöht wird.

PARAMETER DER TASTE PARAM

Trigger-Pegel (TRG.LEVEL): 0 — 100

Der Pegel, den das Eingangssignal haben muß, damit sich die "Gate" öffnet. Wurde der Höchstwert (100%) eingestellt, wird die Gate nur von extrem lauten Signalen ausgelöst. Bei einer Einstellung auf 1% hingegen wird sie selbst durch schwache Signale getriggert.

Trigger-Verzögerung (TRG.DLY): -100,0 — +100,0 mSek

Das Zeitintervall zwischen dem Auslösen der Gate und dem Moment, wo sie sich öffnet.

Trigger-Sperre (TRG MSK): 3 — 24.000 mSek

Diese Funktion unterdrückt neue Schaltimpulse solange, bis das eingestellte Zeitintervall verstrichen ist.

Einschwingrate (ATTACK): 3 - 24.000 mSek

Die Zeit, die verstreicht, bis sich die Gate vollends geöffnet hat.

Abfalldauer (DECAY): 3 - 24.000 mSek

Die Zeit, die nach dem völligen Öffnen der Gate bis zum Erreichen des Abfallpegels verstreicht.

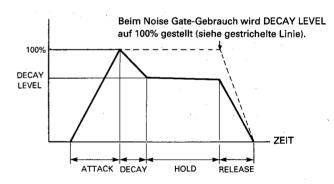
Abfallpegel (DECAY LVL): 0 - 100%

Der Pegel, mit dem das Signal während der HOLD TIME wiedergegeben wird. Je geringer der Wert, desto geringer ist der HOLD-Pegel.

Haltezeit (HOLD): 1 - 24.000 mSek

Die Dauer, während der die Gate nach Erreichen des Abfallpegels geöffnet bleibt.

Ausklingdauer (RELEASE): 3 — 24.000 mSek


Die Zeit, die verstreicht, bis sich die Gate wieder geschlossen hat.

MIDI-Auslöser (MIDI TRG): OFF, ON

Haben Sie für diesen Parameter ON eingestellt, wird die Gate durch eine vom MIDIfähigen Keyboard kommenden Note-An-Meldung getriggert. Diese Note-An-Meldung wird durch das Drücken einer oder mehrerer Manualtasten generiert.

HINWEIS:-

Dieser Effekt kann auch mit der Taste TRIGGER auf der Gerätevorderseite bzw. mit einem an die Buchse TRIGGER auf der Geräterückseite angeschlossenen Fußtaster getriggert werden.

PARAMETER DER TASTE INT PARAM

Frequenz des Hochpaßfilters (HPF FRQ.): THRU, 32 Hz —1,0kHz

Frequenz des Tiefpaßfilters (LPF FRQ.): 1,0 — 16kHz, THRU

DIE TRANSPONIERUNGS PROGRAMME

- 28. PITCH CHANGE 1
- 29. PITCH CHANGE 2
- 30. PITCH CHANGE 3
- 31. MONO PITCH

DIE PARAMETER DER TASTE PARAM

■ 28. PITCH CHANGE 1

Mit PITCH CHANGE 1 kann man zusätzlich zu der Originaltonhöhe noch zwei weitere Noten ausgeben, deren Intervall programmierbar ist. Die Ausgabe aller drei Noten erfolt über den mittleren Kanal.

1. Transponierung (1 PITCH): -24 — +24

2. Transponierung (2 PITCH): -24 — +24

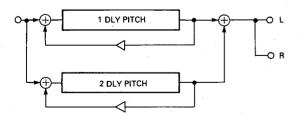
Das Intervall der ersten und der zweiten Note. Man kann sie bis zu zwei Oktaven nach oben bzw.nach unten verschieben.

Stimmen der 1. (1 FINE): -100 — +100

Stimmen der 2. (2 FINE): -100 — +100

Hier Stimmt man die beiden Noten in 1-Cent-Schritten.

Verzögerung der 1. (1 DLY): 0,1 — 650,0 mSek Verzögerung der 2. (2 DLY): 0,1 — 650,0 mSek


Das Zeitintervall zwischen dem Original und der 1. bzw. 2 Transponierung.

Rückkopplung der 1. (1 FB): -99 — +99% Rückkopplung der 2. (2 FB): -99 — +99%

Beträgt der Wert dieses Paramaters 0, erklingt die Transponierung nur einmal nach dem Verstreichen der DELAY-Zeit. Je höher der FB-Wert, desto zahlreicher sind die Wiederholungen, die ihrerseits auch wieder um das programmierte Intervall (PITCH) transponiert werden.

Pegel der 1. (1 LEVEL): 0 — 100% Pegel der 2. (2 LEVEL): 0 — 100%

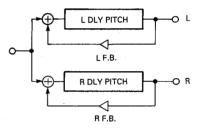
Diese Parameter bestimmen den Pegel der 1. und 2. Transponierung.

■ 29. PITCH CHANGE 2

Genau wie mit Pitch Change 1 erzielt man auch mit Pitch Change 2 zwei weitere (auf Wunsch transponierte) Noten des Originals. Die Ausgabe erfolgt jedoch über den linken und rechten Kanal (das Original wird über den mittleren Kanal ausgegeben), so daß die Harmonien das ganze Stereo-Panorama besetzen.

Transponierung links (L PITCH): -24 — +24 Transponierung rechts (R PITCH): -24 — +24

Das Intervall der ersten und der zweiten Note. Man kann sie bis zu zwei Oktaven nach oben bzw. nach unten verschieben.


Stimmen der Linken (L FINE): -100 — +100 Stimmen der Rechten (R FINE): -100 — +100 Hier stimmt man die beiden Noten in 1-Cent-Schritten

Verzögerung der Linken (L DLY): 0,1— 650,0 mSek Verzögerung der Rechten (R DLY): 0,1 — 650.0 mSek

Das Zeitintervall zwischen dem Original und der linken bzw. rechten Transponierung.

Rückkopplung links (L FB): -99 — +99% Rückkopplung rechts (R FB): -99 — +99%

Beträgt der Wert dieses Paramaters 0, erklingt die Transponierung nur einmal nach dem Verstreichen der DELAY-Zeit. Je höher der FB-Wert, desto zahlreicher sind die Wiederholungen, die ihrerseits auch wieder um das programmierte Intervall (PITCH) transponiert werden.

30. PITCH CHANGE 3

Mit Pitch Change 3 hat man Zugriff auf den "dichtesten" und komplexesten Klang: Es werden drei Noten zum Original hinzugefügt.

- 1. Transponierung (1 PITCH): -24 +24
- 2. Transponierung (2 PITCH): -24 +24
- 3. Transponierung (3 PITCH): -24 +24

Hier stellt man das Intervall der 1., 2. und 3. Transponierung ein. Jede Note kann bis zu zwei Oktaven nach oben bzw. unten gestimmt werden.

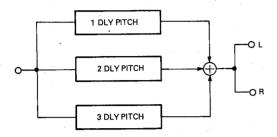
Stimmen der 1. (1 FINE): -100 — +100

Stimmen der 2. (2 FINE): -100 — +100

Stimmen der 3. (3 FINE): -100 — +100

Hier stimmt man die drei Noten in 1-Cent-Schritten.

Verzögerung der 1. (1 DLY): 0,1 — 1400,0 mSek Verzögerung der 2. (2 DLY): 0,1 — 1400,0 mSek Verzögerung der 3. (3 DLY): 0,1 — 1400,0 mSek


Das Zeitintervall zwischen dem Original und der 1., 2. bzw. 3. Transponierung.

Peael der 1. (1 LEVEL): 0 - +100%

Pegel der 2. (2 LEVEL): 0 - +100%

Pegel der 3. (3 LEVEL): 0 - +100%

Diese Parameter bestimmen den Pegel der 1., 2. und 3. Transponierung.

■ 31. MONO PITCH

Das programm MONO PITCH produziert eine einzelne note mit geänderter Tonhöhe. Der Parameter PITCH kann beim Spielen verändert werden (z.B. mit einem externen Steuergerät), umglatte Tonhöhenvariation in Echtzeit zu bieten.

Transponierung (PITCH): -24 --- +24

Die Tonhöhe der Transponierung, die bis zu zwei Oktaven über (+24) bzw. unter (-24) dem Original liegen kann.

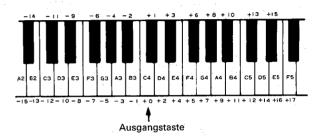
Stimmen (PITCH FINE): -100 -- +100

Hiermit erzielt man eine Feinstimmung der Transponierung in 1-Cent-Schritten.

Verzögerung (DLAY): 0,1 — 1400,0 mSek

Das Zeitintervall zwischen dem Original und der Transponierung.

Rückkopplung (FB GAIN): -99 - +99%


Beträgt der Wert dieses Paramaters 0, erklingt die Transponierung nur einmal nach dem Verstreichen der DELAY-Zeit. Je höher der FB-Wert, desto zahlreicher sind die Wiederholungen, die ihrerseits auch wieder um das programmierte Intervall (PITCH) transponiert werden.

DIE PARAMETER DER TASTE INT PARAM

Ausgangstaste (BASE KEY: OFF, C1 — C6)

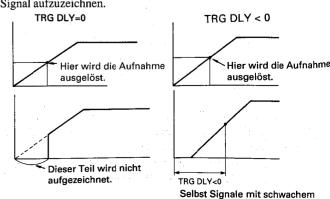
Mit diesem Parameter stellt man die "Ausgangstaste" (BASE KEY) eines Synthesizers ein, mit der man den PITCH-Parameter triggern möchte (hierfür muß die Buchse MIDI OUT des Synthesizers mit der Buchse MIDI IN des SPX900 verbunden werden. Vergessen Sie nicht den Empfangskanal des SPX900 gemäß dem Übertragungskanal einzustellen.) Lautet der BASE KEY-Wert C4, erzielt man durch das Spielen der Note C3 (C3 ist

eine Oktave tiefer als C4) einen PITCH-Wert von -12. Drücken Sie hingegen die Taste D4, so erhöhen Sie den PITCH-Wert um eine ganze Note (+2). Werden zwei Tasten gleichzeitig gedrückt, bestimmt man mit der oberen den PITCH-Wert der Note 1 PITCH oder L PITCH und mit der unteren die Tonhöhe von 2 PITCH oder R PITCH. Beim Stereo Pitch-Programm hat die zuletzt gedrückte Note Vorrang. Selbst beim Drücken einer Taste, die weiter als als zwei Oktaven von der BASE KEY-Taste entfernt liegt, bewegt sich der PITCH-Wert im Bereich -24 ~ +24. Haben Sie OFF eingestellt, kann die Tonhöhe nicht mit einem MIDIfähigen Gerät geändert werden.

DAS SAMPLE-PROGRAMME

■ 32. FREEZE

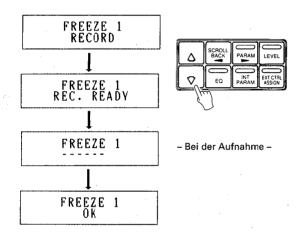
Mit dem Freeze-Programm kann man einen Klang samplen (digital aufzeichnen). Die Länge des Samples darf maximal 1,35 Sekunden betragen.


DIE PARAMETER DER TASTE PARAM

Aufnahmebetrieb (REC.MODE): MANUAL, AUTO

Hier bestimmt man, wie der Sample-Vorgang gestartet werden soll: Entweder durch Drücken der Parameterwahltaste \triangle , der Taste TRIGGER oder mit einem Fußtaster, der mit der Buchse TRIGGER verbunden wurde. Haben Sie AUTO angewählt, wird der Sampling-Vorgang gestartet, sobald der Signalpegel hoch genug ist.

Aufnahmeverzögerung (TRG. DLY): –1350 — +1000 mSek


Die Aufnahme braucht nicht unbedingt in dem Moment zu beginnen, in dem Sie die Taste/den Fußtaster betätigen oder wenn der Pegel des Signals hoch genug ist. Bei negativen Werten wird die Aufnahme zuerst gespeichert, um auch den Teil VOR dem Signal aufzuzeichnen.

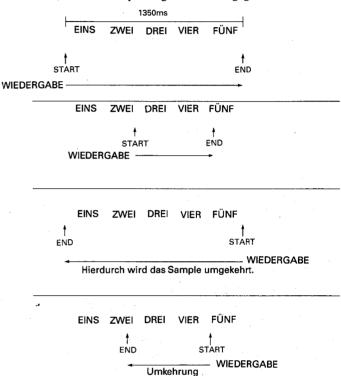
Aufnahmebereitschaft (RECORD):

Der Sample-Vorgang kann erst beginnen, wenn die Meldung "RECORD READY" angezeigt wird. Wenn "RECORDS" angezeigt wird, müssen Sie die Parameterwahltaste \triangle drücken, damit die Meldung "RECORD READY" erscheint. Der SPX900 ist soweit. Triggern Sie ihn nun von Hand (MANUAL) oder automatisch (AUTO), je nach dem oben programmierten Betrieb. Das Display sieht nun folgendermaßen aus: "______". Sobald das Ende erreicht ist, erscheint die Meldung "OK". Beim Ausführen des RECORD-Befehl werden die zuvor gesampleten Daten jeweils gelöscht.

Durch Drücken der Taste TRIGGER oder eines an die Buchse TRIGGER angeschlossenen Fußtasters kann man die Wiedergabe starten. Eine weitere Wiedergabemöglichkeit stellt MIDI dar: Verbinden Sie die Buchse MIDI OUT des Keyboards mit der Buchse MIDI IN des SPX900 und Sie können das Sample in verschiedenen Tonhöhen spielen.

ÜBERSPIELBEREITSCHAFT (OVERDUB):

Mit RECORD (s.o.) samplet man neue Klänge. Mit OVERDUB hingegen kann man zu dem ersten Sample noch ein zweites hinzufügen. Rufen Sie die Anzeige OVERDUB auf und starten Sie den Überspielvorgang mit dem programmierten Betrieb (MANUAL oder AUTO). Während der zweiten Aufzeichnung sieht das Display folgendermaßen aus: "———". Unmittelbar nach der Aufnahme wird "OK" angezeigt, und das bedeutet, daß alles in Ordnung ist.


Durch Drücken der Taste TRIGGER oder eines an die Buchse TRIGGER angeschlossenen Fußtasters kann man die Wiedergabe starten –sofern der Parameter INPUT TRG eingschaltet ist (ON). Eine weitere Wiedergabemöglichkeit stellt MIDI dar: Verbinden Sie die Buchse MIDI OUT des Keyboards mit der Buchse MIDI IN des SPX900 und Sie können das Sample in verschiedenen Tonhöhen spielen.

Beginnpunkt der Wiedergabe (START): 0 - 1350 mSek

Der Freeze-Speicher faßt Samples mit einer Länge von bis zu 1,35 Sekunden (1350 mSek). Mit diesem Parameter bestimmt man, wo die Wiedergabe beginnen soll.

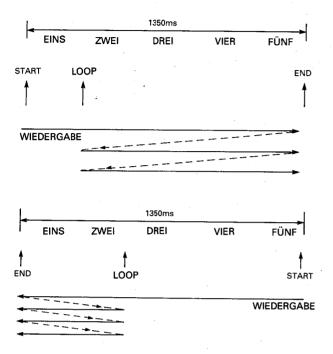
Endpunkt der Wiedergabe (END): 0 — 1350 mSek

Mit diesem Parameter bestimmt man, wo die Wiedergabe des Samples enden soll. Legt man den END-Punkt vor den START-Punkt, wird das Sample umgekehrt wiedergegeben.

Tonhöhe der Wiedergabe (PITCH): -24 - +24

Hiermit bestimmt man die Tonhöhe des Samples in Halbtonschritten. Das Sample kann um bis zu zwei Oktaven nach oben bzw. nach unten transponiert werden.

Stimmen des Samples (PITCH FINE): -100 — +100


Hiermit stimmt man das Sample in 1-Cent-Schritten (1 Cent ist 1/100 eines Halbtones).

Schleifenpunkt (LOOP) 0 — 1350,0 mSek

Hiermit stellt man den Endpunkt des Samples ein. Jedoch beginnt die Wiedergabe beim Erreichen des Endpunktes gleich wieder von vorne (vom LOOP-Punkt aus). Solange Sie den Trigger betätigen, erklingt das Sample.

Feineinstellung der Schleife (LOOP FINE): -200 - +200

Mit diesem Parameter stellt man den Schleifenpunkt exakter ein als mit LOOP, um reibungslose Schleifen zu programmieren.

DIE PARAMETER DER TASTE INT PARAM

Ausgangstaste (BASE KEY): OFF, C1 — C6

Mit diesem Parameter stellt man die "Ausgangstaste" (BASE KEY) eines Synthesizers ein, mit der man den PITCH-Parameter triggern möchte (hierfür muß die Buchse MIDI OUT des Synthesizers mit der Buchse MIDI IN des SPX900 verbunden werden. Vergessen Sie nicht den Empfangskanal des SPX900 gemäß dem Übertragungskanal einzustellen.) Lautet der BASE KEY-Wert C4, erzielt man durch das Spielen der Note C3 (C3 ist eine Oktave tiefer als C4) einen PITCH-Wert von -12. Drücken Sie hingegen die Taste D4, so erhöhen Sie den PITCH-Wert um eine ganze Note (+2). Selbst beim Drücken einer Taste, die weiter als als zwei Oktaven von der BASE KEY-Taste entfernt liegt, bewegt sich der PITCH-Wert im Bereich -24 ~ +24. Haben Sie OFF eingestellt, kann die Tonhöhe nicht mit einem MIDIfähigen Gerät geändert werden.

DIE STEREO-PANORAMA PROGRAMME

- 33. PAN
- 34. TRIGGERED PAN

Es gibt zwei Pan-Programme.

PARAMETER DER TASTE PARAM

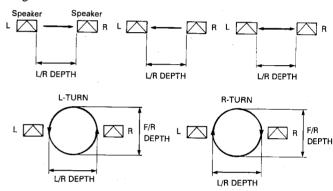
■ 33. PAN

Bemerkenswert dürfte der Umstand sein, daß nicht nur ein $R \rightarrow L$, sondern auch ein "rotierender Pan-Effekt" programmierbar ist.

Panorama-Typ: (PAN TYPE): L ightarrow R, L \leftarrow R , L \leftrightarrow R, L-TURN. R-TURN

Die Richtung, in der sich ein Signal bewegt. Mit L- und R-Turn erzielt man einen Effekt, der beim Zuhörer den Eindruck erweckt, als würde das Signal sich auf ihn zu- bzw. von ihm wegbewegen.

Pan-Geschwindigkeit (PAN SPEED): 0,05 — 40,00Hz


Die Geschwindigkeit, mit der sich das Signal hin- und herbewegt.

Tiefe vorne/hinten (F/R DEPTH): 0 - 100%

Haben Sie entweder L-TURN oder R-TURN gewählt, programmiert man mit diesem Wert, wie weit die vermeintliche Bewegung von vorne nach hinten sein soll.

Tiefe links/rechts (L/R DEPTH): 0 — 100%

Die "Tiefe": der Bewegung von rechts nach links und/oder umgekehrt.

34. TRIGGERED PAN

Sobald das Programm ausgelöst wird, wird das Stereo-Panorama zwischen dem rechten und linken Kanal gesteuert. Die Attack-, Pan-, Release-Werte sind programmierbar.

Trigger-Pegel (TRG.LEVEL): 1 — 100

Der Pegel, den das Eingangssignal haben muß, damit Pan gestartet wird. Wurde der Höchstwert (100%) eingestellt, wird die Stereo-Bewegung nur von extrem lauten Signalen ausgelöst. Bei einer Einstellung auf 1% hingegen wird der Nachhall selbst durch schwache Signale getriggert.

Trigger-Verzögerung (TRG.DLY): -100,0 — +100,0 mSek

Das Zeitintervall zwischen dem Auslösen des Effektes und dem Moment, wo der Pan-Effekt einsetzt. Negative Werte bedeutet, daß das Original verzögert wird, so daß es der Pan-Effekt erklingt.

Trigger-Sperre (TRG MSK): 3 — 24.000 mSek

Diese Funktion unterdrückt neue Schaltimpulse solange, bis das eingestellte Zeitintervall verstrichen ist.

Einschwingrate (ATTACK): 3 — 24.000 mSek

Dei Geschwindigkeit, mit der der Pan-Effekt beginnt.

Pan-Dauer (PANNING): 3 — 24.000 mSek

Hier bestimmt man, wie lange der Hauptteil des Pan-Effektes dauern soll.

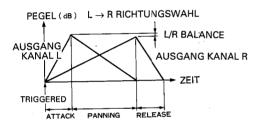
Ausklingrate (RELEASE): 3 — 24.000 mSek

Die Geschwindigkeit des letzten Pan-Teiles.

pan-Richtung (DIRECTION): $L \rightarrow R$, $L \leftarrow R$

Die Richtung, in der der Pan-Effekt vorgenommen wird.

Balance links/rechts (L/R BALANCE): 0 — 100%


Wie weit der Pan-Effekt gehen soll. Beträgt der Wert 100%, so wird der Pan-Effekt von hart links bis hart rechts vorgenommen. Je kleiner der Wet, desto mehr rückt der Effekt in die Mitte.

MIDI-Auslöser (MIDI TRG): OFF, ON

Haben Sie für diesen Parameter ON eingestellt, wird der Effekt durch eine vom MIDIfähigen Keyboard kommenden Note-An-Meldung getriggert. Diese Note-An-Meldung wird durch das Drücken einer oder mehrerer Manualtasten generiert.

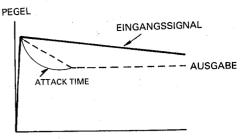
_HINWEIS: -

Dieser Effekt kann auch durch Betätigen der Taste TRIGGER (Gerätevorderseite) oder eines Fußtasters (an die Buchse TRIGGER anschließen) gestartet werden.

DIE PARAMETER DER TASTE INT PARAM

HPF FRQ, LPF FRQ

DAS "KOMPRESSOR"- PROGRAMM


■ 35. COMPRESSOR

Der Kompressor des SPX900 ist erfreulich vielseitig und hilft Ihnen beim "Zähmen" der eingehenden Signale. Der Effekt kann entweder zum Reduzieren des Dynamikbereiches eines Signals oder zum Zusammendrücken des Signals einer Baß- oder E-Gitarre verwendet werden. Aber auch Sängern wird dieser Kompressor helfen, immer mit derselben Lautstärke zu singen. Es handelt sich um einen Stereo-Kompressor, wo jeweils der höhere Signalpegel —entweder des rechten oder linken Kanals— zum Begrenzen des Pegels verwendet wird.

DIE PARAMETER DER TASTE PARAM

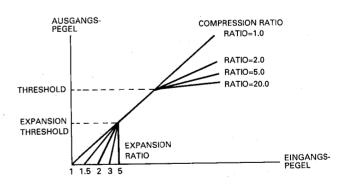
Einschwingrate (ATTACK): 1 — 40 mSek

Die Zeit, die verstreicht, bis der Kompressor voll funktioniert. Der Kompressor wird nur aktiviert, wenn der mit THRESHOLD programmierte Pegel überschritten wird. Im Sinne eines natürlichen Klanges sollte die Attack so exakt wie möglich eingestellt werden.

Ausklingdauer (RELEASE): 10 — 2000 mSek

Die Zeit, die verstreicht, bis sich der Kompressor nach dem Asbinken unter den THRESHOLD-Pegel wieder ausschaltet. Zu kurze Release-Wert beenden den Klang zu abrupt und klingen unnatürlich.

Schwelle (THRESHOLD): - 48 — - 6dB

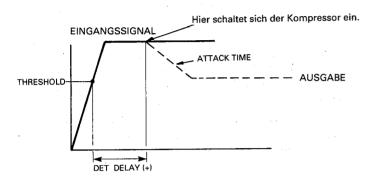

Der Pegel des Eingangssignals, der den Komprseeor einschaltet. Bei einem niedrigen Wert (–48dB) werden alle eingehenden Signale zusammegdrückt. Bei höheren Pegeln wird der Kompressor nur aktiv, wenn ein Signal den Threshold-Wert übersteigt. Auch hier gilt, daß die Schwelle so eingestellt werden sollte, daß Sie den Charakter eines Instrumentes nicht verschleiert.

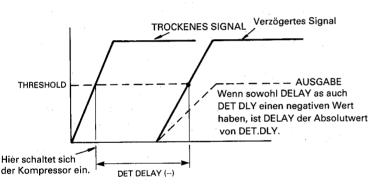
Verhältnis (RATIO): 1,0 - 20,0

Hier bestimmt man den "Grad" der Kompression, die auf ein Signal ausgeübt wird. Beträgt der Wert 1,0, ist keine Kompression vorhanden. Beträgt der Wert 20, so ist die Kompression maximal.

Expander-Schwelle (EXPAND THRS): -72 — -30 dB Expander-Rate (EXPAND RATIO):1,0 — 5,0

Mit diesem Parameter lassen sich niederpegelige Rauschsignale unterdrücken. Signale unter der Expander-Schwelle werden nicht durchgelassen.




Verzögerung (DELAY): 0,1 — 1400,0 mSek

Das Zeitintervall zwischen dem Original und dem Einsetzen des Kompressors.

Wahrnehmen einer Verzögerung (DET. DLY): -50,0 — +50.0 mSek

Mit diesem Parameter schiebt man eine Verzögerung zwischen den Moment, in welchem der Threshold-Wert überschritten wird und dem Beginn des Kompressors. Die Verzögerung garantiert, daß die Attack eines Signales unangetastet bleibt, während der Rest komprimiert wird. Bei negativen DET DLY-Werten wird das komprimierte Signal vor dem Original ausgegegeben. Wert haben, ist DELAY der Absolutwert von DET.DLY.

DIE PARAMETER DER TASTE INT PARAMETER

Hochpaßfilterfrequenz (DET.HPF): THRU, 500Hz — 8.0kHz

Es ist möglich, nur ein bestimmtes Frequenzband zu komprimieren. Im Falle dieses Parameters werden nur Frequenzen oberhalb der hier eingestellten Grenzfrequenz zusammengedrückt. Haben Sie den THRU-Wert angewählt, ist der Kompressor für den gesamte Frequenzgang aktiv.

VERZERRUNG

■ 36. DISTORTION

Die hier generierte Verzerrung ist nicht nur vielseitig und flexibel, sondern dürfte auch höchsten Ansprüchen genügen.

DIE PARAMETER DER TASTE PARAM

Verzerrung (DISTORTION): 0 — 100%

Mit diesem Parameter stellt man die Balance ein: Beträgt der Wet 0, so wird das Signal nicht mit Verzerrung versehen. Beträgt der Wert dagegen 100%, so hört man nur das verzerrte Signal.

Frequenz der Mitten (MID FRQ): 250Hz — 5,6 kHz

Der Mittenbereich, der angehoben oder abgesenkt werden soll. Siehe den nächsten Parameter.

Verstärkung der Mitten (MID GAIN): -12 -- +12dB

Hier bestimmt man, ob der oben programmierte Frequenzbereich angehoben (positive Werte) oder abgesenkt (negative Werte) werden soll. Beträgt der Wert 0, so wird die Frequenz weder hervorgehoben noch unterdrückt.

Anheben/absenken der Höhen (TREBLE): -12 — +12dB

Hiermit werden die Höhen entweder angehoben oder abgesenkt. Negative Werte bedeuten, daß die Höhen reduziert werden, positive Werte hingegen heben die Höhen hervor.

Verzögerung der Verzerrung (DELAY): 0,1 — 1000,0 mSek

Die Verzögerung zwischen dem Erklingen des trockenen Signals und der Verzögerung.

DIE PARAMETER DER TASTE INT PARAM

.Trigger-Pegel (TRG.LEVEL): 0 — 100

Der Pegel, den das Eingangssignal haben muß, damit die Verzerrung einsetzt. Wurde der Höchstwert (100%) eingestellt, wird die Schaltung nur von extrem lauten Signalen ausgelöst. Bei einer Einstellung auf 1% hingegen wird die Schaltung selbst durch schwache Signale getriggert.

Ausklingrate (RELEASE): 3 — 24.000 mSek

Die Geschwindigkeit, mit der sich die Gate nach dem Verstreichen der Haltedauer (HOLD) wieder schließt. Je höher der Wert, desto langsamer klingt die Verzerrung aus.

DAS "AURAL EXCITER"-PROGRAMM

37. AURAL EXCITER

Dieses Programm fügt dem eingehenden Signal auf künstlichem Wege passende Obertöne hinzu und hebt es damit hervor, ohne daß man den Pegel des Signales zu erhöhen braucht.

HPF FRQ: 500Hz — 16kHz

Der Frequenzgang, der dem Signal hinzugefügt wird. Je höher der Wert, desto weiter reichen die Obertöne.

ENHANCE: 0 — 100%

Der Pegel der hinzugefügten Obertöne. Je höher der Wert, desto "lauter" die Obertöne.

Verhältnis Exciter/trockenes Signal (MIX LVL): 0 — 100%

Die Balance zwischen dem ursprünglichen Signal und den hinzugefügten Obertönen.

DELAY: 0,1 - 740,0 mSek

DIE MULTI-EFFEKT PROGRAMME

- 38. MULTI(ECH&REV)1
- 39. MULTI(ECH+REV)2
- 40. MULTI(CHO&REV)1
- 41. MULTI(CHO&REV)2
- 42. MULTI(CHO&REV)3
- 43. MULTI(SYM&REV)1
- 44. MULTI(SYM&REV2
- 45. MULTI(SYM&REV)3
- = 40. MICETICS (00 DE) (4
- 46. MULTI(EXC&REV)1
- 47. MULTI(EXC&REV)2

Die Multi-Programme des SPX900 kombinieren Kompressor, Verzerrung, Equalizer und Dynamik-Filter (Zugriff über die Taste EQ), Nachhall, Chorus und Aural Exciter® miteinander. Siehe die Effekt-Anordnungsübersicht, um zu erfahren, wie die Effekte kombiniert wurden.

In allen Fällen erlaubt einem die erste Anzeige, die Effekte einoder auszuschalten. Mit der Taste PARAM oder SCROLL BACK führt man den Kursor zu einem der Effekte und mit den Parameterwahltasten ♦ oder ♦ schaltet man den Effekt ein bzw. aus:

MULTI(CHO&REV)1 •CO ⊙DI •CH •RV

"O" = AUS; "• "= EIN. In unserem Beispiel sind also der Kompressor (CO), der Nachhall (RV) und der Chorus (CH) aus. Nur die Verzerrung (DI) ist eigeschaltet.

Sobald Sie alle gewünschten Effekte eingeschaltet haben, müssen Sie die Taste PARAM drücken, um zu den Hauptparametern zu gehen. Es werden nur die Parameter der eingeschalteten Effekte angezeigt.

DIE PARAMETER DER TASTE INIT PARAM

Alle Multi-Programme enthalten sowohl Verzerrung (DI) als auch einen Kompressor (CO). Die Parameter erreicht man über die Taste INT PARAM.

Einschwingrate des Kompressors (CO.ATTACK): Siehe den Abschnitt KOMPRESSOR auf S. 21.

Ausklingrate des Kompressors (CO.RELS): 10-1000ms, Siehe den Abschnitt KOMPRESSOR auf S. 21.

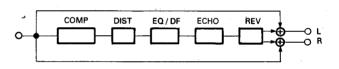
Kompressor×Schwelle (CO. THRSLD): -42 — -12dB, Siehe den Abshnitt KOMPRESSOR an f. 21.

Kompressor; Verhältnis (CO.RATIO): Siehe den Abschnitt KOMPRESSOR auf S. 21.

Verzerrung(DI.DIST): Siehe den Abschmitt VERZERRUNG auf S.22

Verzerrung; Frequenz der Mitten (DI.MID F): Siehe den Abschnitt VERZERRUNG auf S. 22.

Verzerrung; Verstärkung der Mitten (DI.MID G): Siehe den Abschnitt VERZERRUNG auf S. 22.


Verzerrung; Anheben/absenken der Höhen (DI.TRBL): Siehe den Abschnitt VERZERRUNG auf S. 22.

Verzerrung; Trigger-Pegel (TRG.LEVEL): Siehe VERZERRUNG auf S. 21.

Ausklingrate (RELEASE): Siehe KOMPRESSOR auf S. 21.

DIE PARAMETER DER TASTE PARAM

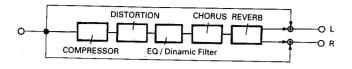
- 38. MULTI(ECH&REV)1
- 39. MULTI(ECH&REV)2

Rückkopplungsverzögerung (EC.FBDLY): 0,1 — 700,0ms Siehe STEREO ECHO auf S15.

Rückkopplungsverstärkung (EC.F.B): Siehe STEREO ECHO auf S15.

Hochfrequenz-Rückkoplungsverstärkung (EC.HIGH): Siehe STEREO ECHO auf S.15.

Anfangsverzögerung (EC.INDLY.): 0,1 — 700,0ms Siehe STEREO ECHO auf S.15.


Nachhallzeit (RV.RT): Siehe REV1 HALL auf S.11.

Hochfrequenz-Nachhallverhältnis (RV.HIGH): Siehe REV1 HALL auf S.11.

Anfangsverzögerungszeit (RV.DLY): Siehe REV1 HALL auf S.11.

Balance trockenes Signal-Nachhall (RV.MIX): 0 - 100%Bestimmt die Mischung zwischen an den Nachhall-Prozessor angelegten Signalen und dem Nachhallklang.

- 40. MULTI(CHO&REV)1
- 41. MULTI(CHO&REV)2
- 42. MULTI(CHO&REV)3

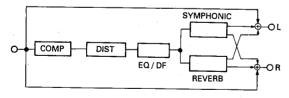
Chorus-Frequenz (CH.FRQ): 0,05 — 40,00Hz

Modulations-Tiefe des Chorus' (CH.DM DEPTH): 0% — 100%

Hiermit stellt man die Intensität ein, mit der die Verzögerungszeit (Delay time) eines Signals im Vergleich zu einem anderen variiert wird.

Amplitudenmodulation des Chorus-Effektes (CH.AM DEPTH): 0% — 100%

Die Intensität, mit der die Amplitude (d.h. die Lautstärke) des Eingangssignales variiert wird.


Nachhalldauer (RV.RT): Siehe REV1 HALL auf S. 11.

Nachhalldauer der Höhen (RV.HIGH): Siehe REV1 HALL auf S. 11.

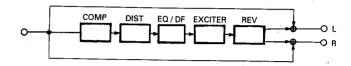
Verzögerung des Nachhalls (RV.DLY): 0,1 — 800,0ms Siehe REV1 HALL auf S. 11.

Balance trockenes Signal-Nachhall (RV.MIX): Siehe MULT(ECH&REV) auf.S. 23.

- 43. MULTI(SYM+REV)1
- 44. MULTI(SYM+REV)2
- 45. MULTI(SYM+REV)3

Frequenz des Symphonic-Effektes (SY FRQ): Siehe den Abschnitt SYMPHONIC auf S. 15

Tiefe des Symphonic-Effektes (SY.DEPTH): Siehe SYMPHONIC auf S. 15.


Nachhalldauer (RV.RT): Siehe REV1 HALL auf S. 11.

Nachhalldauer der Höhen (RV.HIGH): Siehe REV1 HALL auf S. 11.

Verzögerung des Nachhalls (RV.DLY): 0,1 — 800,0ms, Siehe REV1 HALL auf S. 11.

Balance trockenes Signa-Nachhall (RV.MIX):Siehe MULTI (ECH&REV) auf S. 23.

- 46. MULTI(EXC&REV)1
- 47. MULTI(EXC&REV)2

Die COMPRESSOR-, DISTORTION und REVERB-Parameter dieses MULTI-Effektes sind dieselben wie die der Programme MULTI (CHO&REV) und MULTI (SYM+REV). Wird der AURAL EXCITER (EX) eingeschaltet, haben Sie Zugriff auf folgende Parameter:

EX.HPFF: Siehe AURAL EXCITER auf S. 22.

EX.ENHANCE: Siehe AURAL EXCITER auf S. 22.

EX.MIX LVL: Siehe AURAL EXCITER auf S. 23.

Nachhalldauer(RV.RT): Siehe REV1 HALL auf S.11

Nachhalldauer der Höhen (RV.HIGH): Siehe REV1 HALL auf S.11


Verzögerung des Nachhalls (RV.DLY): 0,1 — 800,0ms, Siehe REV1 HALL auf S.11

Balance trockenes Signal-Nachhall (RV.MIX): Siehe MULTI(ECH&REV) auf S.23

DOPPEL EFFEKT-PROGRAMME

Die Doppel effekt-Programme enthalten jeweils unterschiedliche Effekte für den linken und rechtenKanal. Mit den internen Parametern der Doppeleffekt-Programme kann man programmieren, ob die Effekte miteinander kombiniert und in Stereo ausgegeben werden sollen oder ob sie völlig getrennt (d.h. in Mono) bleiben sollen.

■ 48. PLATE+HALL

DIE PARAMETER DER TASTE PARAM

Dauer des Plattenhalls (PLT RT): Siehe REV 1 HALL auf S. 11.

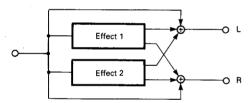
Halldauer der Höhen (PLT HIGH): 0,3 — 480,0s Siehe REV 9 PLATE auf S. 11.

Transparenz des Plattenhalls (PLT DIFF): Siehe REV 9 PLATE auf S. 11.

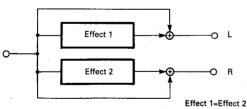
Verzögergerung des Plattenhalls (PLT DLY): Siehe REV 9 PLATE auf S. 11.

Halldauer des Saalhalls (HAL RT): Siehe REV 1 HALL auf S. 11.

Halldauer der Höhen (HAL HIGH): Siehe REV 1 HALL auf S. 11


Transparenz des Saalhalls (HAL DIFF): Siehe REV 1 HALL auf S. *11.

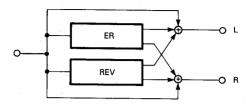
Verzögerung des Saalhalls (HAL DLY): Siehe REV 1 HALL auf S. 11.


DIE PARAMETER DER TASTE INT PARAM

Stereo oder zweimal Mono (OUT MODE): ST, MONO×2

Im ST-Betrieb (stereo) werden die Signale des 1. und 2. Prozessors miteinander kombiniert und in Stereo ausgegeben. Im MONO×2-Betrieb hingegen bleiben beide Prozessoren getrennt und werden über ihren eigenen Ausgang ausgegeben. MODE=STEREO

MODE=MONO × 2


Frequenz des Tiefpaßfilters der Platte (PLT LPF): THRU, 1,0 — 16kHz

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

Frequenz des Tiefpaßfilters des Saales (HAL LPF): 1,0 — 16kHz, THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

■ 49. ER+REV

DIE PARAMETER DER TASTE PARAM

Erstreflexionstyp (ER TYPE): Siehe PERCUSSION ER auf S. 13.

Raumgröße der Erstreflexionen (ROOM SIZE): 0,1 — 10,0, Siehe PERCUSSION ER auf S. 13.

Lebendigkeit der Erstreflexionen (LIVENESS): Siehe PERCUSSION ER auf S. 13.

Transparenz der Erstreflexionen (ER.DIFF): Siehe PERCUSSION ER auf S. *13.

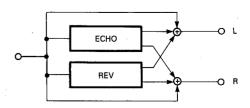
Verzögerung der Erstreflexionen (ER DLY): 0,1 — 300,0ms, Siehe PERCUSSION ER 1 auf S. 13.

Dauer des Nachhalls (REV. TIME): Siehe REV 1 HALL auf S. 11.

Halldauer der Höhen (HIGH): Siehe REV 1 HALL auf S. 11. Transparenz des Nachhalls (REV DIFF): Siehe REV 1 HALL auf S. 11.

Verzögerung des Nachhalls (REV DLY): 0,1 — 300,0ms, Siehe REV 1 HALL auf S. 11.

DIE PARAMETER DER TASTE INT PARAM


Stereo oder zweimal Mono (OUT MODE): ST, MONO×2

Im ST-Betrieb (stereo) werden die Signale des 1. und 2. Prozessors miteinander kombiniert und in Stereo ausgegeben. Im MONO×2-Betrieb hingegen bleiben beide Prozessoren getrennt und werden über ihren eigenen Ausgang ausgegeben.

Frequenz des Tiefpaßfilters des Nachhalls (REV LPF): 1,0 — 16kHz,THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

■ 50. ECHO+REV

DIE PARAMETER DER TASTE PARAM

Verzögerung des linken Kanals (LFB DLY): 0,1 — 350,0ms, Siehe STEREO ECHO auf S. 15.

Rückkopplung des linken Kanals (Lch FB): Siehe STEREO ECHO auf S. 15.

Verzögerung des rechten Kanals (RFB DLY): 0,1 — 350,0ms, Siehe STEREO ECHO auf S. 15.

Rückkopplung des rechten Kanals (Rch FB): Siehe STEREO ECHO auf S. 15.

Rückkopplung der Höhen (ECHO HIGH): Siehe STEREO ECHO auf S. 15.

Dauer des Nachhalls (REV TIME): Siehe REV 1 HALL auf S. 11.

Halldauer der Höhen (REV HIGH): Siehe REV 1 HALL auf S. 11.

Transparenz des Nachhalls (REV DIFF): Siehe REV 1 HALL auf S. 11

Verzögerung des Nachhalls (REV DLY): Siehe REV 1 HALL auf S. 11.

DIE PARAMETER DER TASTE INT PARAM

Stereo oder zweimal Mono (OUT MODE): ST, MONO×2

Im ST-Betrieb (stereo) werden die Signale des 1. und 2. Prozessors miteinander kombiniert und in Stereo ausgegeben. Im MONO×2-Betrieb hingegen bleiben beide Prozessoren getrennt und werden über ihren eigenen Ausgang ausgegeben.

Frequenz des Tiefpaßfilters Nachhalls (REV LPF): 1,0 — 16kHz, THRU

Die Grenzfrequenz, oberhalb welcher die Signale gefiltert werden. Haben Sie THRU eingestellt, ist der Filter ausgeschaltet.

4. DIE UTILITY-FUNKTIONEN

Mit der Taste UTILITY des SPX900 hat man Zugriff auf mehrere wichtige Funktionen, die man durch wiederholtes Drücken dieser Taste der Reihe nach aufruft:

TITLE EDIT→DIGITAL IN ATT.→USER ER EDIT→
MEMORY PROTECT→MIDI CONTROL→→MIDI PGM
CHANGE→MIDI CTRL ASSIGN→BULK OUT1→BULK
OUT 2→F.SW MEMORY RCL→Verlassen des UTILTYModus'.

Die UTILITY-Funktionen lassen sich auch mit den Parameterwahltasten △ und ▽ durchgehen. Um den UTILITY-Modus zu verlassen, müssen Sie die entsprechende Taste solange gedrückt halten, bis die LED erlischt.

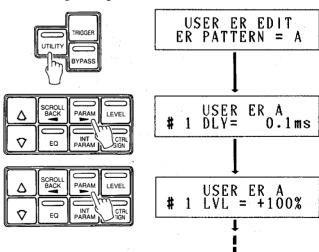
TITLE EDIT

Um Ihre Programme (im User-Speicher 51~99) hinterher schnell zu finden, sollten Sie ihnen Namen geben, die auf ihren Inhalt schließen lassen. Diese Funktion erreichen Sie durch einmaliges Drücken der Taste UTILITY: In der unteren Zeile erscheint die Meldung "TITLE EDIT" und in der oberen Zeile wird ein Kursor angezeigt, der die erste Zeichenposition wiedergibt. Mit den Tasten PARAM und SCROLL BACK führt man den Kursor jeweils zur nächstens bzw. zur vorigen Zeichenposition, und mit den Parameterwahltasten △ und ▽ geht man die verfügbaren Zeichen entweder der Reihe nach oder in umgekehrter Reihenfolge durch. Es können folgende Zeichen aufgerufen werden:

											- i						
#	0	1	2	3	4	5	6	7	8	9	. •	Α	В	С	D	E	F
G	н	ı	J	к	·L	М	N	0	Р	Q	R	s	T	U	٧	w	х
Υ	Z	١.	а	a	b	С	d	е	f	g	h	i	j	k	1	m	n
0	ö	р	q	r	s	t	u	ü	٧	w	×	у	z		ſ],	<
\		•	*	+	_	=	&	/	,			%	!	?	→	-	
٦	٦			_	ア	ア	1	1	ゥ	ゥ	I	ı	才	オ	カ	+	ク
ヶ	П	サ	シ	ス	セ	ソ	タ	チ	ッ	ッ	テ	١	+	=	ヌ	ネ	1
<	ч	フ	^	ホ	マ	111	٨	У	ŧ	ヤ	+	ュ	_	3	э	ラ	IJ
ル	レ	П	7	ヲ	ン												

HINWEIS: -

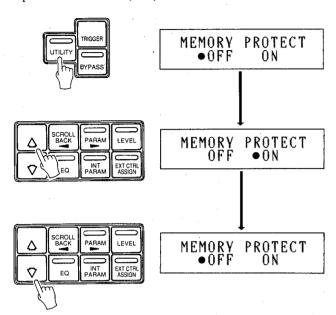
Falls Sie die Funktion TITLE EDIT für einen der ROM-Speicher (1~50) aufrufen, wird die Meldung "RAM (51~99) ONLY" angezeigt, um Sie darauf hinzuweisen, daß man nur die Namen der User-Speicher editieren kann.


DIGITAL IN ATT.

Diese Funktion erlaubt die Abschwächung des digitalen Signals von 0dB auf -60dB. Durch Einstellen Dieses Pegels über DIGITAL IN ATT. anstelle durch Analog-Eingangslautstärke wird der Rauschabstand verbessert.

USER ER EDIT

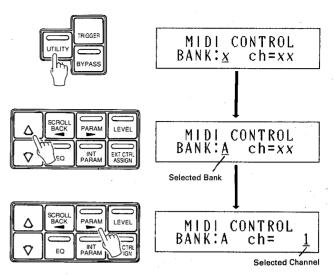
Hier kann man seine eigenen Erstreflexionsmuster (ER) zusammenstellen: User-A, User-B, User-C und User-D. Diese Muster kommen im Programm PROGRAMMABLE ER zum Einsatz. Jedes Muster kann bis zu 19 voneinander unabhängige Reflexionen enthalten. Die Verzögerung, der Pegel sowie die Stereoposition kann für jede Reflexion einzeln programmier werden.


- Drücken Sie die Taste UTILITY solange, bis USER ER EDIT angezeigt wird.
- 2. Verwenden Sie die Parameterwahltasten ♦ und ♥ zur Anwahl des gewünschten Speichers (A, B, C oder D).
- 4. Drücken Sie die Taste PARAM noch einmal, um die Anzeige "#1 LVL=" zu erhalten und stellen Sie den Pegel dieser Reflexion mit den Parameterwahltasten △ und ▽ ein.
- Drücken Sie noch einmal auf PARAM. Es sollte nun "#1
 PAN=" angezeigt werden. Stellen Sie das Panorama der
 Reflexion ein: der Regelbereich liegt zwischen -45 (ganz links)
 und +45 (ganz rechts).
- 6. Drücken Sie die Taste PARAM ein weiteres Mal, um die Parameter DLY, LVL und PAN der übrigen (bis zu 19) Reflexionen aufzurufen und zu editieren. Mit der Taste SCROLL BACK kann man die Parameter in umgekehrter Reihenfolge durchgehen.

MEMORY PROTECT

Vor dem Abspeichern eines Programmes muß man den RAM-Speicher entsichern (MEMORY PROTECT: OFF), weil sonst die Meldung "PROTECTED" angezeigt wird, um Sie darauf hinzuweisen, daß der Speichervorgang unmöglich ist.

- Drücken Sie die Taste UTILITY solange, bis die Meldung "MEMORY PROTECT" angezeigt wird.
- Betätigen Sie die Parameterwahltaste △, um den Speicherschutz einzuschalten (ON) bzw. die Taste ▽, um den Speicher zu entsichern (OFF).

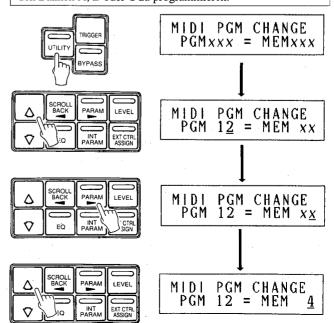

MIDI CTRL & MIDI PGM CHANGE

Da der SPX900 MIDIfähig, lassen sich bestimmte Aspekte auch von einem externen Gerät steuern. Z.B. kann man den SPX900 dahingehend programmieren, daß er jedesmal den zum gerade angewählten Synthesizer-Klang passenden Effekt aufruft. Diese Programmanwahl geschieht mittels einer

PROGRAMMWECHSELNUMMER, der man jede beliebige Speichernummer zuordnen kann. Darüberhinaus versteht der SPX900 auch Note-An-Meldungen, die ebenfalls zum Steuern z.B. der Gate- oder Pitch-Effekte verwendet werden können. Dieses Gerät enthält vier Bänke (A, B, C und D), in denen man vier völlig voneinander unabhängige Zuordnungstabellen speichern kann. Jeder Bank kann ein eigener MIDI-Kanal zugeordnet werden.

Bankanwahl und Programmieren des MIDI-Kanals

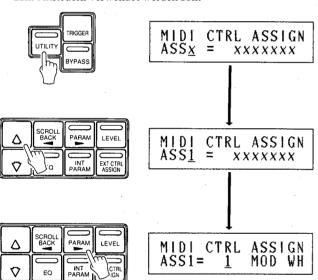
- Drücken Sie die Taste UTILITY solange, bis die Anzeige MIDI CONTROL erscheint.
- 2. Der Kursor sollte sich unter dem BANK-Parameter befinden. Verwenden Sie die Parameterwahltasten △ und ▽, um die gewünschte Bank aufzurufen.
- 3. Führen Sie den Kursor zu "ch=", indem Sie die Taste PARAM drücken und stellen Sie den Empfangskanal (1~16) mit den Tasten 1~16 ein. Sie können auch den OMNI-Betrieb anwählen, in welchem der SPX900 die Daten aller MIDI-Kanäle auswertet, bzw. für MIDI CONTROL "OFF" einstellen, damit der SPX900 nicht auf eingehende MIDI-Meldungen reagiert. Drücken Sie die Taste SCROLL BACK, um den Kursor wieder zu "BANK" zu führen.


Zuordnung der Speicher zu bestimmten Programmwechselnummern

Die Zuordnungen Programm/Speicher werden in derjenigen Bank gespeichert, die Sie zuvor mit der MIDI CONTROL-Funktion aufgerufen haben.

- Drücken Sie die Taste UTILITY oder △ bzw. ▽ , um die Funktion MIDI PGM CHANGE aufzurufen. Der Kursor sollte sich unter der Meldung PGM befinden.
- . 3. Führen Sie den Kursor mit der Taste PARAM zu "MEM" (Speichernummer) und ändern Sie den angezeigten Wert mit den Parameterwahltasten △ und ♡.
- 4. Führen Sie den Kursor danach wieder zu "PGM" und wiederholen Sie die obigen Schritte so oft wie nötig.

- HINWEIS:


Obwohl die Programmwechseltabellen der Bänke A, B und C beim Ausschalten des Geräts gespeichert bleiben, wird beim Wiedereinschalten automatisch die Programmwechseltabelle D aufgerufen (PGM Nummer = MEM Nummer). Denken Sie also daran, PGM/MEM Zuweisungen, die Sie erhalten wollen, in den Bänken A, B oder C zu programmieren.

MIDI CTRL ASSIGN

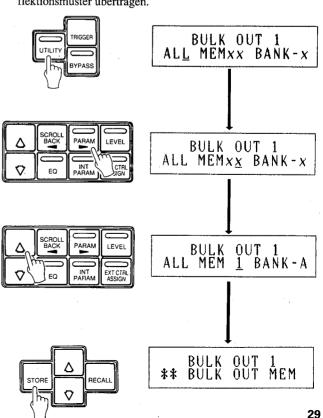
Diese Funktion erlaubt die Steuerung via MIDI des Parameters, dem Sie die Funktion EXT/CTRL FOOT VOL1 und 2 zugeteilt haben. (Siehe "BELEGUNG DER EXTERNEN STEUERELEMENTE" auf S. 8.) Die Steuerung erfolgt mit MIDI-Steuerelementändersmeldungen.

- Drücken Sie die Taste UTILITY so lange, bis die Meldung "MIDI CTRL ASSIGN" angezeigt wird.
- Drücken Sie die Taste PARAM ►, um den Kursor zum Parameter ganz rechts zu führen und das MIDI-Steuerelement einzustellen, das mit Hilte der Parameter walaltasten und zum Ansteuern verwendet werden soll:

Keine Steuerung möglich.

V	Trome Stead and modition.
0	Steuerelementmeldung 0
1 MOD WH	Modulationsrad
2 BREATH	Blaswandler
3	Steuerelementmeldung 3
4 FOOT C	Schwellerpedal
5 PORT T	Portamento-Dauer
6 DATA E	Der DATA (ENTRY)-Schieberegler
7 VOLUME	Der VOLUME-Schieberegler
8~63	Steuerelementänderungsmeldungen 8~63
64 SUST SW	Sustain-Schalter
65 PORT S	Portamento-Schalter
66 SUST P	Sustain-Pedal
67 SOFT P	Soft-Pedal
68~95	Steuerelementänderungsmeldungen 68~95
	(Taster)
96~120	Steuerelementänderungsmeldungen 96~120

OFF

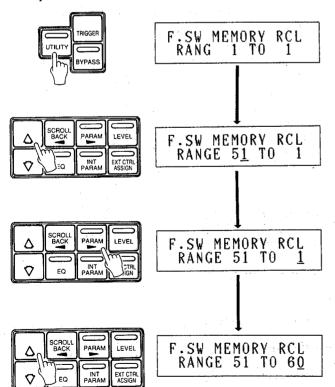

Haben SIe z.B. "1 MOD WH" eingestellt, so kann der diesem Element zugeordnete Parameter mit dem Modulationsrad

gesteuert werden. Hierfür muß man die Buchse MIDI IN des SPX900 mit der Buchse MIDI OUT des Synthesizers verbinden. Mit der Taste SCROLL BACK kann man den Kursor danach wieder zu "ASS" führen.

BULK OUT1 / BULK OUT 2

Diese Funktionen erlauben die Datenübertragung. Der Schalter der Buchse MIDI THRU/OUT muß hierfür auf "OUT" gestellt werden. Die Daten lassen sich sowohl zu einem anderen SPX900 als auch zu einem MIDI-Datenrekorder übertragen. * Die Funktion BULK OUT 1 ermöglicht die Übertragung aller Daten (ALL), einzelner Speicher (MEM) oder einzelner MIDI-Zuordnungsbänke (BANK). Mit BULK OUT 2 können die selbst programmierten Erstreflexionsmuster (USER.ER) sowie alle Systemdaten (SYSTEM) zu anderen Geräten gesendet werden.

- 1. Drücken Sie die Taste UTILITY so lange, bis die Meldung "BULK OUT1" oder "BULK OUT2" angezeigt wird.
- 2. Mit den Tasten PARAM und SCROLL BACK ruft man die Daten auf, die übertragen werden sollen (ALL, MEM, BANK, USER ER oder SYSTEM).
- 3. Haben Sie "ALL" oder "SYSTEM" gewählt, brauchen Sie nur auf STORE zu drücken, um die Daten zu übertragen.
- 4. Haben Sie "MEM", "BANK" oder "USER.ER" eingestellt, müssen Sie mit den Parameterwahltasten △ und ▽ die gewünschte Speichernummer, Bank oder das Reflexionsmuster einstellen. Betätigen Sie danach STORE, um den Blockabwurf zu starten. Wenn anstelle einer 2 ahl gewählt wird, werden alle Speicher, alle ⊁ Banken oder alle Anwenderreflektionsmuster übertragen.



* Diese Art der Ausgabe wird nur vom SPX900 empfangen, wenn die Funktion MEMORY PROTECT ausgeschaltet ist und der MIDI-Kanal der gleiche ist wie der des Ausgabegerätes. Da Gruppendaten von einem zweiten SPX900 z.B. an den gleichen Speicherplätzen wie im Ausgabegerät abgelegt werden, muß sichergestellt werden, daß an diesen Speicherplätzen keine wichtigen Daten vorhanden sind, da diese sonst überschrieben werden.

F.SW MEMORY RCL

Die Speicher des SPX900 lassen sich auch mit einem Fußtaster aufrufen. Am besten verwendet man hierfür einen FC5 von Yamaha, der an die Buchse INC/DEC angeschlossen wird. Mit der Funktion F.SW MEMORY RCL betimmt man den Bereich der Speichernummern, die per Fuß aufgerufen werden können.

- Betätigen Sie die Taste UTILITY, um F.SW MEMORY RCL aufzurufen. Der Kursor sollte sich unter der Nummer vor "TO" befinden.
- 2. Mit den Parameterwahltasten △ und ▽ können Sie nun eine Speichernummer einstellen.
- 3. Drücken Sie die Taste PARAM, um den Kursor zu der Nummer hinter "TO" zu führen.
- 4. Mit den Parameterwahltaten △ und ▽ können Sie nun eine Speichernummer einstellen.

z.B.) F.SW MEMORY RCL RANGE 51 TO 60

F.SW MEMORY RCL RANGE 51 TO 60

Wenn z.B. der RANGE-Parameter auf "H to 60" eingestellt ist, wie in der LCD-Abbildung oben gezeigt, wird bei jedem Drücken des Fußschalters die nächsthöhere Speicherstelle zugeordnet, bis die letzte Nummer im angegebenen Bereich gewählt ist. Nach der letzten Nummer im angegebenen Bereich wird die erste (niedrigste) Nummer gewählt und der Vorgang wiederholt.

z.B.) F.SW MEMORY RCL RANGE 54 TO 51

Umgekehrte Sequenzen können programmiert werden, indem die höchste Zahl der Reihe vor der niedrigsten eingegeben wird, wie unten gezeigt:

> F.SW MEMORY RCL RANGE 54 TO 51

In diesem Fall gilt: $54 \rightarrow 53 \rightarrow 52 \rightarrow 51 \rightarrow 54 \rightarrow ...$

5: DATA & SPECIFICATIONS

ROM CONTENTS AND CONTROLLABLE PARAMETERS

	— [5:	os T	23-K						 																										
CTRL No. PARAMETER NAME	VW ~ N			\	<u></u>			,		· 	OUTLAL	0.0 ~ 200%	130 %		\			\	\			7		0.0 ~ 200%	0,000	\	\			\		\	<u>-</u>	OUTLYL	0.0 ~ 200%
PARAM	INI	V .	2	_	\		_	\			BALANCE	0.0 ~ 100 %	100 %		\			\	\				BALANCE	100%	0,001	\	\					\		BALANCE	0.0 ~ 100 %
EXT CTRL ASSIGN		-		_	\		ा	\	\			EVEL		_	\			\	_		\				7 7 794 1000	\	\ \			\		\	\		TENE
		0	•	\	\	MIDITEG	OFF ON	15			_	\			\		MIDI TRG.	OFF, ON	유									MIDI TRG	OFF. ON	750	HIGH O	0.1 ~ 5.0	9.0		
Parameter Name Value Range Preset Value		•		\		RELEASE	က	↓	\						\		RELEASE	3 ~ 24000 ms	23 ms							\		RELEASE	3 ~ 24000 ms	5 ms	HIGH GAIN	- 15 ~ + 15 dB	+2 dB		
U	Parameter	9	LPF FRQ.	*2	8.0 kHz	ПОП	-		\			\ \ \		LPFING	2	16 KHz		1 ~ 24000 ms	120 ms					\	LPF FRO.	*2	THRU	OTOH,		150 ms	HI FRQ.	500 ~ 16 kHz	8.0 kHz		
LEVEL		2	HPF FRQ.	-	THRU	TRG. DLY	-100.0~+100.0ms	- 7.0 ms			\	\			- -	IHIKU	I RG. DLY	-100.0~+100.0ms	– 7.0 ms						HPF FRQ.		THRU	TRG, DLY	100.0~+100.0ms	-7.0 ms	HI EQ	PEAK, SHLV	PEAK		
[] 83		4	MDLY	0.1 ~ 200.0 ms	30.0 ms	TRG. LEVEL	0~100	0	\			\	MIM	0.1 ~ 200.0 ms	21 200.0 118	O. I IIIS	ING. LEVEL	0 ~ 100	35		\		\		INI DLY	0.1 ~ 200.0 ms	12.0 ms	TRG. LEVEL	0 ~ 100	0	LOWGAIN	-15~+15dB	+2dB		
INT		3	DIFFUSION	0 ~ 10	co.	DENSITY	0~4	4	\			\	DIEGIGION	0~10	2	DENIOHE	DENSIT	0~4	4				\		DIFFUSION	0~10	9	DENSITY	0~4	4	ens	4	100 Hz		
PARAM		2	HIGH	0.1 ~ 1.0	9.0	REV DLY	$0.1 \sim 100.0 \text{ms}$	0.1 ms			Z - Z	0.0 ~100.0 %	HIGH	0.1 ~ 1.0	0.4	REVIEW	17007	0.1 ~ 100.0 ms	1.0 ms			2.	BALANCE	0.0 ~100.0 %	æ	0.1 ~ 1.0	0.8	REV DLY	0.1 ~ 100.0 ms	0.1 ms	LOW EQ	PEAK, SHLV	SHLV	2 BALANCE	0.0 ~100.0 %
		•	REV TIME	0.3 ~ 480.0 s	2.6 s	ER/REV BAL	0 ~ 100 %	20 %	110		DEV TIME	0.0 ~ 100.0 %	REV TIME	0.3 ~ 480.0 s	2.6 s	ER/REV RAI	10000	% 00L ~ 0	40%		OFF	11	REV TIME	0.0 ~ 100.0 %	REV TIME	0.1 ~ 480.0 s	1.4s	ER/REV BAL	0~100%	40%			●EQ	REV TIME	0.0 ~ 100.0 %
	Function	Key		PARKM			PARAM				EXTCTR	ASSIGN		PARAM				PARAM				Ē	EXT CTR. ASSIGN			PARAM			PARAM			89		EXT CTR.	
SINGLE	Program Name		REVI HALL										REV2	HALL&GATE						12.					REV3 ROOM 1	in the second			1 to					Kida 9	
SIS	Memory	Š	-										2												င										F

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU

							•																		
CTRL No. PARAMETER NAME MIN ~ MAX		, jii		\			\			\		OUTLVL	0.0 ~ 200%	130 %					\			OUTIVE	0 ~ 200%	135 %	
CTR PARAME MIN	14,5,744	10					\			\		BALANCE	0.0 ~ 100 %	100 %					\			: - - -	BALANCE	0 ~ 100 %	100 %
EXT CTRIL ASSIGN	377	6		<u></u>			· \ _			\						\			\			\		[ENBT	
		8		\		MIDI TRG.	OFF, ON	OFF	∵но	0.1 ~ 5.0	0.7		\			\		MIDI TRG.	OFF, ON	OFF				\	
Parameter Name Value Range Preset Value		1.0				RELEASE	3 ~ 24000 ms	5 ms	HIGAIN	- 15 ~ + 15 dB	gp 0		\					PELEASE	3 ~ 24000 ms	5 ms		1		<u></u>	
	Parameter	9	- LPF FR0.	*2	6.3 KHz	HOLD	1 ~ 24000 ms	150 ms	HI FRQ.	500 ~ 16 kHz	10 kHz	\	\		LPF FRO.	*2	10 kHz	_ ного	1 ~ 24000 ms	150 ms				\	
Evel =		9.5	HPEFRO.	*1	THRU	TRG. DLY	-100.0~+100.0ms	– 7.0 ms	Н EQ	PEAK, SHLV	PEAK		\	/	HPF FRQ.	:	THRU	TRG. DLY	-100.0~+100.0ms	-7.0 ms				\	
E0		Physics	MDEY	0.1 ~ 200.0 ms	10.0 ms	TRG. LEVEL	0~100	0	- LOW GAIN	- 15 ~ + 15 dB	+2 dB		\		N DLY	0.1 ~ 200.0 ms	0.1 ms	TRG: LEVEL	0 ~ 100	. 0		\		\	
INT PARAM		8 .1.	- DIFFUSION	0 ~ 10	9	C DENSITY	0~4	4	LOW FRO.	32 ~ 2.2 kHz	80 Hz		\	/	DIFFUSION	0 ~ 10	9	DENSITY	0~4	4		\		\	
PARAM 9		7 mm	НЭН	0.1 ~ 1.0	9.0	REV DLY	0.1 ~ 100.0 ms	0.1 ms	_ FOM EO	PEAK, SHLV	SHLV	7.5	BALANCE	0.0 ~100.0 %	HIGH	0.1 ~ 1.0	0.3	Y TO VARY	0.1 ~ 100.0 ms	0.1 ms			7	BALANCE	0.0 ~100.0 %
,		ESTI-	REV-TIME	0.1 ~ 480.0 s	1.0 s	ER/REV BAL	0 ~ 100 %	22 %	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		●EQ	3000.00	REV TIME	0.00 ~ 100.0 %	REV TIME	0.1 ~ 480.0 s	0.7 s	ER/REV BAL	0 ~ 100 %	% & 2	1 05-19	OFF		REV TIME	0.0 ~ 100.0 %
4	Function	Key		PAROM			INT			. E0			EXT CTRL.			PARAM			INT		- E			EXT CTRI. ASSIGN	
SINGLE	Memory Program Name		REV4 ROOM 2				10					35			REV5 ROOM 3										
NIS	Memory	No.	4												- 2										

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU

	SOM SE		Karana.	_	Т.	1	,	<u> </u>		N	•		Κ.			-1-51 L/Is-	1		· ·									For the		
CTRL No. PARAMETER NAME MIN ~ MAX		-	LPFFRG	2	8.0 kHz			\			\	· .					0.0 ~ 200%	130 %						\		\	\		0.0 ~ 500%	130 %
PARAME MIN		0	HPF FRQ.	F	THRU				\			\		\		BALANCE	0.0 ~ 100 %	100 %			\		\	\		\		BALANCE	0.0 ~ 100 %	100 %
EXT CTRL =		6	ATO IOI	0.1 ~ 200.0 ms	25.0 ms			\	1					\ \ \ \			EME			\									BA91	
		8	DIFFUSION	0~10	2			\		MIDI TRG.	OFF, ON	땅		\		_	\			\		- MIDI TRG.	OFF, ON	넁	HIGAIN	- 15 ~ + 15 dB	0 dB		\	\
Parameter Name Value Range Preset Value		7	нвн	x 0.1 ~ x 1.0	0.7	- 18	D DECAY	RT x 0.1 ~ 10.0	x 1.2	RELEASE	3 ~ 24000 ms	5 ms				\						RELEASE	3 ~ 24000 ms	5 ms	H FRO.	500 ~ 16 kHz	16k Hz		\	\
11	Parameter	9	LIS. POSI.	٠ *	FRONT		HDECAY	RT x 0.1 ~ 10.0	x 1.0	ПОП	1 ~ 24000 ms	150 ms		\					LPF FRQ.	*2	THRU	HOLD	1 ~ 24000 ms	150 ms	ні Ео	PEAK, SHLV	SHLV		\	_
. LEVEL		- 2	WALLVARY	0 ~ 30	7	- 16	WDECAY	RT x 0.1 ~ 10.0	x 1.0	TRG, DLY	-100.0~+100.0ms	– 7.0 ms		\			\		HPF FRQ.	*1	63 Hz	TRG. DLY	-100.0~+100.0ms	-5.0 ms	LOWQ	0.1 ~ 5.0	1.0		\	
		4	DEPTH	0.5 ~ 34.0 m	13.7 m	15	W. VARY FINE	-100 ~ + 100	. 0	TRG. LEVEL	0 ~ 100	0					\		NI DLY	0.1 ~ 200.0 ms	60.0 ms	TRG. LEVEL	0 ~ 100	0	LOW GAIN	-15~+15dB	-2 dB		\	
INT PARAM		. 3	HEIGHT	0.5 ~ 34.0 m	8.3 m	1	DEPTH FINE	- 100 ~ + 100	0	DENSITY	0~4	4					_		DIFFUSION	0~10	8	DENSITY	0~4	4	LOW FRG.	32 ~ 2.2 kHz	500 Hz		\	
PARAM		2	MDTH	0.5 ~ 34.0 m	19.4 m	- 13	HEIGHT FINE	-100 ~ + 100	0	REV DLY	0.1 ~ 300.0 ms	50.0 ms				2	BALANCE	0.0 ~100.0 %	НВН	0.1 ~ 1.0	0.7	REV DLY	0.1 ~ 100.0 ms	0.1 ms	LOW EQ	PEAK, SHLV	PEAK	2	BALANCE	0.0 ~ 100.0 %
		.	REV TIME	0.3 ~ 100.0 s	1.2 s	- 15	WIDTH FINE	- 100 ~ + 100	0	ER/REV BAL	0 ~ 100 %	20 %			OFF		REV TIME	0.0 ~ 100.0 %	REV TIME	0.3 ~ 480.0 s	2.6 s	ER/REV BAL	0 ~ 100 %	% 59			•E0	-	REV TIME	0.0 ~ 100.0 %
	Function	Key				РАВАМ					, INT. PARAM			EQ			EXT CTRL ASSIGN			PARAM			PARAM			α,			ASSIGN	
SINGLE	Program Name		REV6 WHITE	MOOM															REV7 VOCAL 1											
IIS	Метогу	Vo.	9																7											

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU * 3: FRONT, CENT., REAR

						•																				
CTRL NO. PARAMETER NAME MIN ~ MAX				\			\				\ \	0011.VL	0.0 ~ 200%	135 %		\).			\		OUT LYL	0.0 ~ 200%	130 %
PARAME MIN		0.		\	_		\	\			\ \	BALANCE	0.0 ~ 100 %	100 %		\		7 2 2	\			\		BALANCE	0.0 ~ 100 %	100 %
EXT CTRI. ASSIGN		6		\	\	\	\	\	- н о	0.1 ~ 5.0	9.0] 🛮		1	\			\			\	\		LEVEL	
		8		\	\	MIDI TRG.	OFF, ON	OFF	HIGAIN	- 15 ~ +15 dB	+2 dB		\			\		- MIDI TRG.	OFF, ON	OFF.	HIGAIN	- 15 ~ + 15 dB	+1 dB		\	
Parameter Name Value Range Preset Value		1 2		\	\	RELEASE	3 ~ 24000 ms	sш g	HIFRO.	500 ~ 16 kHz	10 kHz					\		RELEASE	3 ~ 24000 ms	sw g	HI FRQ.	500 ~ 16 kHz	10 kHz		\	
	Parameter	9	LPF FRO.	*2	THRU	- НОГД	1 ~ 24000 ms	150 ms	HEO	PEAK, SHLV	PEAK		\	/	LPF FRO.	*2	8.0 kHz	HOLD	1 ~ 24000 ms	150 ms	HI EQ	PEAK, SHLV	SHLV		/	
= TEVEL		2	HPF FRO.	*1	2H 08	TRG. DLY	-100.0~+100.0ms	-5.0 ms	- FOW G	0.1 ~ 5.0	0.7		\		HPF FRQ.	*1	2H £9	TRG. DLY	-100.0~+100.0ms	-7.0 ms	O MOT	0.1 ~ 5.0	0.5			
		7	INIDEX	0.1 ~ 200.0 ms	50.0 ms	TRG, LEVEL	001 ~ 0	0	LOW GAIN	- 15 ~ +15 dB	ap o				- INI DI'A	0.1 ~ 200.0 ms	10.0 ms	TRG. LEVEL	001 ~ 0	0	LOW GAIN	Bp 51 + ~ 51 -	42 dB		\	
INT PARAM		. 3	DIFFUSION	0 ~ 10	9	- DENSITY	0~4	4	LOW FRG.	32 ~ 2.2 kHz	100 Hz		_		DIFFUSION	0 ~ 10	9	- DENSITY	0~4	2	LOW FRG.	32 ~ 2.2 kHz	100 Hz		\	
PARAM		2	HOH	0.1 ~ 1.0	0.5	REV DLY.	0.1 ~ 100.0 ms	7.0 ms	LOWEQ	PEAK, SHLV	PEAK		BALANCE	.0.0 ~100.0 %	HIGH	0.1 ~ 1.0	0.4	. REV DLY	0.1 ~ 100.0 ms	0.1 ms	COW EQ	PEAK, SHLV	PEAK		BALANCE	0.0 ~100.0 %
		F	REV. TIME	0.3 ~ 480.0 s	1.2 s	ERIREV BAL	% 001 ~ 0	% 06			0∃●	1	REV TIME	% 0.001 ~ 0.0	REV TIME	0.1 ~ 480.0 s	2.6 s	TV8 /J3U/B3	% 001 ~ 0	% 98			0∃●	, j.	REV TIME	0.0 ~ 100.0 %
	Function	Key		PARAM			PARAU]@]		EXT CTRL ASSIGN		Ī	PARAM			P. R.			g			EXT.CTRL ASSIGN	
SINGLE	Program Name	ill di	REV8 VOCAL 2												REV9 PLATE		S. Market St.									
SIN	Memory	V	8												6		j.									

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU

CTRI NO. PARAMETER NAME MIN ~ MAX		T.	\	\	<u>, </u>		\			\		- 0UTLW	0.0 ~ 200%	130%	LPF FRQ.	*2	8.0 kHz			\			\			WI JUL	0.0 ~ 200%	130%
PARAME		-10		\	\			· ,		\		BALANCE	0.0 ~ 100 %	100 %	HPF FRG.	1.1	THRU			\	\		\			BALANCE	0.0 ~ 100 %	100 %
Ext other		6		\ \ \						\					- DI DEY	0.1 ~ 200.0 ms	25.0 ms						\				LEVEL	
		8		\	\	MIDI TRG.	OFF, ON	OFF	HIGAIN	- 15 ~ + 15 dB	+1 dB		\	\	DIFFUSION	0~10.0	9			\		- MIDI TRG.	OFF, ON	OFF			\	
Parameter Name Value Range Preset Value		- L		\		RELEASE	3 ~ 24000 ms	31 ms	H FRO	500 ~ 16 kHz	10 kHz		\	\	нен	x 0.1 ~ x 1.0	0.7	- 18	D DECAY	RT x 0.1 ~ 10.0	x 1.0	RELEASE	3 ~ 24000 ms	5 ms			\	
	Parameter	9	LPF FRQ.	*2	8.0 kHz	— HOLD	1 ~ 24000 ms	210 ms	HEO	PEAK, SHLV	SHLV		\	<u></u>	LIS. POSI.	*3	FRONT	4	H DECAY	RT x 0.1 ~ 10.0	x 1.0	HOLD	1 ~ 24000 ms	150 ms			\	
		9	HPF FRQ.	r	2H £9	TRG. DLY	-100.0~+100.0ms	-7.0 ms	TOWO!	0.1 ~ 5.0	0.5		\	\	WALL VARY	0 ~ 30	16	- 16	W DECAY	RT x 0.1 ~ 10.0	x 1.0	TRG. DLY	-100.0~+100.0ms	- 7.0 ms			\	
[] æ		7	INIDLY	0.1 ~ 200.0 ms	10.0 ms	TRG. LEVEL	0 ~ 100	41	LOW GAIN	-15 ~ + 15 dB	+2dB		\		ОЕРТН	0.5 ~ 34.0 m	14.2 m	15	W.VARY FINE	- 100 ~ ÷ 100	0	TRG. LEVEL	0 ~ 100	0		-	\	
INT PARAM		8	DIFFUSION	0 ~ 10	. 6	- DENSITY	0~4	2	LOW FRG.	32 ~ 2.2 kHz	100 Hz		1		HEIGHT	0.5 ~ 34.0 m	9.1m	- 14	DEPTH FINE	- 100 ~ + 100	0	— DENSITY —	0~4	4	\		\	
PARAM		7	HOH	0.1 ~ 1.0	0.4	REV DLY	0.1 ~ 100.0 ms	0.1 ms	LOWEQ	PEAK, SHLV	PEAK	2	BALANCE	0.0 ~100.0 %	МОТН	0.5 ~ 34.0 m	19.4 m	- 13	HEIGHT FINE	-100 ~ + 100	0	REV DLY	0.1 ~ 100.0 ms	32.0 ms		2	BALANCE	0.0 ~100.0 %
			REV TIME	0.1 ~ 480.0 s	2.6 s	ER/REV BAL	0 ~ 100 %	32 %			●EQ		REV TIME	0.0 ~ 100.0 %	REV TIME	0.3 ~ 100.0 s	5.5 s	12	WIDTH FINE	- 100 ~ + 100	0	ER/REV BAL	0 ~ 100 %	40 %	OFF	•	REV TIME	0.0 ~ 100.0 %
	Function	Key		PARAM		Ī	NT]'8			EXT.CTRL ASSIGN					PARAM					PARAM				- ASSIGN	
SINGLE	Program Name		REV10	PLATE&GATE			A STATE OF THE STA								REVIT TUNNEL		7. P. S.											
S	Memory	No.	- 10												Ŧ													

* 1: THRU, 32 Hz ~ 1.0 KHz * 2: 1.0 ~ 16 KHz, THRU * 3: FRONT, CENT., REAR

														_		_	_			_														
CTRL No. PARAMETER NAME MIN ~ MAX		1	LPF FRQ.	*2	6.3 kHz			\			\				\	OUTLAL	0.0 ~ 200%	130%	LPF FRG.	. 2	10 kHz			\			\	\.		\	\	OUTLVL	0.0 ~ 200%	135%
PARAMET MIN		10	HPF FRQ.	-	THRU			\				\		\		BALANCE	0.0 ~ 100 %	100 %	HPF FRO.	-	THRU			\			\			\		BALANCE	0.0 ~ 100 %	100 %
EXT CTRL ASSIGN		6	DIDLY	0.1 ~ 200.0 ms	90.0 ms			\			\			\) (PEE)		— IDI DI X	0.1 ~ 200.0 ms	5.0 ms			\			\	\		\			LEVEL	
		8	DIFFUSION	0~10	9			\		MIDI TRG.	OFF, ON	OFF							DIFFUSION	0 ~ 10	9			\		MIDI TRG.	OFF, ON	J-JO					\	_
Parameter Name Value Range Preset Value		7	₽	0.1 ~ 1.0	0.3	18	DDECAY	RT x 0.1 ~ 10.0	x 1.0	RELEASE	3 ~ 24000 ms	5 ms	LFO FRG.	0.1 ~ 10.0 Hz	2.5 Hz				HGH	0.1 ~ 1.0	0.8	18	D DECAY	RT x 0.1 ~ 10.0	x 1.2	RELEASE	3 ~ 24000 ms	5 ms					\	\
1 II	Parameter	9	LIS, POSI.	*3	REAR	17	H DECAY	RT x 0.1 ~ 10.0	x 1.0	HOLD	1 ~ 24000 ms	150 ms	0	LOW HIGH	MOT				LIS. POSI.	.3	CENT.		H DECAY	RT x 0.1 ~ 10.0	x 1.0	HOLD	1 ~ 24000 ms	150 ms	LFO FRO.	0.1 ~10.0 Hz	2.8 Hz		\	
E E		- 2	WALL VARY	0 ~ 30	13	16	W DECAY	RT x 0.1 ~ 10.0	x 1.2	TRG. DLY	-100.0~+100.0ms	– 7.0 ms	GAIN 5	9,	+ 18 dB		\		WALL VARY	0 ~ 30	15	- 16	W DECAY	RT x 0.1 ~ 10.0	x 0.8	TRG OLY	100.0~+100.0ms	— 7.0 шs	ō	LOW, HIGH	MOT		\	
		, ,	DEPTH	0.5 ~ 34.0 m	25.8 m	15	W.VARY FINE	- 100 ~ + 100	0	TRG. LEVEL	0~100	0	ЕОЕПН	0 ~ 8 oct	3 oct		\		ОЕРТН	0.5 ~ 34.0 m	16.2 m	15	W.VARY FINE	- 100 ~ + 100	0	TRG. LEVEL	0 ~ 100	0	. РОЕРТН	0 ~ 8 oct	0 oct		\	
INT PATAM		3	HEIGHT	0.5 ~ 34.0 m	17.1 m	14	DEPTH FINE	-100 ~ + 100	0	* DENSITY	. 0~4	4	FCENTER	32 ~ 16 kHz	250 Hz		\		НЕІСНТ	0.5 ~ 34.0 m	7.2 m	- 14	DEPTH FINE	- 100 ~ + 100	0	DENSITY	0~4	4	F.CENTER	32 ~ 16 kHz	630 Hz		\	
PARAM 9		2	МПТ	0.5 ~ 34.0 m	9.4 m	13	HEIGHT FINE	- 100 ~ + 100	0	REV DLY	0.1 ~ 100.0 ms	40.0 ms	FLTTYPE	*4	PEQ		BALANCE	0.00~100.0%	HLOM	0.5 ~ 34.0 m	4.6 m	- 13	HEIGHT FINE	- 100 ~ + 100	0	REV DLY	0.1 ~ 100.0 ms	50.0 ms	ELTTIVE	* 4	LPF	2	BALANCE	0.00~100.0%
			REV TIME	0.3 ~ 100.0 s	12.0 s	12	WIDTH FINE	- 100 ~ + 100	0 ·	ER/REV BAL	0 ~ 100 %	% 02			●D. FLT		REV TIME	0.0 ~ 100.0 %	REV TIME	0.3 ~ 100.0 s	0.6 s	- 12	WIDTH FINE	- 100 ~ + 100	0	ER/REV BAL	0 ~ 100 %	% 02			●D. FLT		REV TIME	0.0 ~ 100.0 %
	Function	Key			Ī	PARAM					INT			. 60			EXT CTRL ASSIGN					PARAM					INT	j		EQ			ASSIGN	
SINGLE	Program Name F		REV12 CANYON																REV13	BASEMENT		1										200 000 000 000	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
SIIS	lemory	No.	12	1.5															23								i							

* 1: THRU, 32 Hz ~ 1.0 KHz * 2: 1.0 ~ 16 KHz, THRU * 3: FRONT, CENT., REAR

* 4: LPF, HPF, BPF, PEQ * 5: Display on = FLT TYPE = PEQ only * 6: -18, -12, -6, 6, 12, 18 (dB)

Ext City = PARAMETER NAME MIN ~ MAX		VE V								BALANCE		130%									BALANCE OUT LVL		100 % 130%							HI GAIN HI Q	-15~+15dB 0.1~5.0	+2dB 0.4	Contract of the designation of the second contract of the second con	BALANCE OUTLYL
Parameter Name Value Range Preset Value			LPF FRG.	*2	10 KHz		\				\		LPF FRQ.	*2	10 kHz							\		LPF FRG.	.2	8.0 kHz		1		. HI FRO.	500 ~ 16 kHz	5.6 kHz		
G	Parameter		HPF FRO.		32 Hz		\				\		HPF FRQ.	-	THRU							\		HPF FRO.	*	THRU		\		HI EQ	PEAK, SHLV	PEAK		\
LEVEL .	yf.	٧	INI DLY	0.1 ~ 400.0 ms	10.0 ms	DENSITY	1~3	3				/	INI DLY	0.1 ~ 400.0 ms	10.0 ms	DENSITY	0~3	3		\		\		MIDLY	0.1 ~ 400.0 ms	18.0 ms	DENSITY	0~3	3	LOWQ	0.1 ~ 5.0	0.7		
[] a			DIFFUSION	0~10	9	Висн	x 0.1 ~ x 1.0	0.1			\		DIFFUSION	0~10	10	FBHIGH	x 0.1 ~ x 1.0	0.7,				\		DIFFUSION	0~10	8	FB HIGH	x 0.1 ~ x 1.0	0.7	LOW GAIN	-15 ~ + 15 dB	Bp 0		
INT PARAM	100 per 100 pe	4	LIVENESS	0~10	æ	FB GAIN	%66 + ~ 66 -	0 %	<u> </u>		\		LIVENESS	0~10	5	FB GAIN	% 66 + ~ 66 -	%0		\.		\		LIVENESS	0~10	8	FBGAIN	% 66 + ~ 66 -	+ 10 %	LOW FRG.	32 ~ 2.2 kHz	100 Hz		
PARAM		6	ROOM SIZE	0.1 ~ 25.0	2.0	FB DLY	0.1 ~ 900.0 ms	1.2 ms		2	BALANCE	0.00~100.0%	ROOM SIZE	0.1 ~ 25.0	2.0	FB DLY	0.1 ~ 900.0 ms	150.0 ms		_	2	BALANCE	0.0 ~100.0 %	ROOM SIZE	0.1 ~ 25.0	3.0	FB 01.Y	0.1 ~ 900.0 ms	130.0 ms	LOWEQ	PEAK, SHLV	PEAK		2
	Harry Commence of the Commence		TYPE	*3	RANDOM	ER NUMBER	1~19	19	OFF		ROOM SIZE	0.00 ~ 100.0 %	TYPE	* 4	TYPE-A	ERNUMBER	1~19	19	100	OFF		ROOM SIZE	0.0 ~ 100.0 %	TYPE	*4	TYPE-B	ER NUMBER	1~19	19			• EQ		_
	Filection	Kev		PABAM] NA],		EXTOTRE			PARAM		555	INT					ASSIGN			PARAM	1,4		INT			E0		一日 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日	ĺ
SINGLE	Program Name		PERCUSSION ER										GATE REVERB											REVERSE	GATE									
SS	Memory	, QV											- 51					T New Pr	San S					- 16								TALLET PL		

^{* 1:} THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU * 3: S-HALL, L-HALL, RANDOM, REVERSE, PLATE, SPRING * 4: TYPE – A, B

CTRL No. PARAMETER NAME MIN ~ MAX				<u></u>	_	<u></u>	\			OUTLVL	0.0 ~ 200%	130%		\		-	\			\	OUT LVL	0.0 ~ 200%	100%					\			OUTLYL	0.0 ~ 200%	100%
CTRL No. PARAMETER N. MIN ~ MAX		- 10		\			\			BALANCE	0.0 ~ 100 %	100 %		\			\				BALANCE	0.0 ~ 100 %	100 %		\		\				BALANCE	0.0 ~ 100 %	001
EXT CTRI.		6		_			· \				TEAST						\					LEVEL					\					B/B/	
		8					\							<u>.</u>			\					\		\	\							\	
Parameter Name Value Range Preset Value		7.	LPF FRQ.	*2	10 KHz		\				\					LPF FRQ.	*2	8.0 kHz				\		\		I PE FRO	6.	10 KHz				\	
6	Parameter	9.	HPF FRO.	-	THE		\				\ \ 			\		HRFFRQ	∓:	THRU								HREFRO		THRU				\	
		2	MI DLY	0.1 ~ 400.0 ms	10.0 ms	DENSITY	0~3	င						\		НІЯН	x 0.1 ~ x 1.0	1.0							· \	/ HIGH	×01~×10	1.0			2		
		,	DIFFUSION	0 ~ 10	4	FBHIGH	x 0.1 ~ x 1.0	0.7						\		FB2 GAIN	% 66 + ~ 66 -	0%				\		Coh LVL	-200 ~ + 200 %	FB2 GAIN	% bb ∓ ~ bb =	%0				\	
INT		.3	LIVENESS	0 ~ 10	8	FBGAIN	%66 + ~ 66 -	% 0	\		\					FB2 DLY	0.1 ~ 1480.0 ms	250.0 ms				\			0.1 ~ 1480.0 ms	FB2 DLY	0.1 ~ 1480.0 ms	200.0 ms				\	
PARAM		. 2	ROOM SIZE	0.1 ~ 25.0	3.5	. ¥10°BU	0.1 ~ 900.0 ms	150.0 ms		2	BALANCE	0.0 ~100.0 %	Reh DLY	0.1 ~ 1480.0 ms	250.0 ms	FB1 GAIN	% 66 + ~ 66 -	%0			2	BALANCE	0.0 ~100.0 %	Reh DLY	0.1 ~ 1480.0 ms	FBIGAIN	% 66 + ~ 66 -	%0			2	BALANCE	0.0.001 - 0.0
A .			TYPE	*3	USER - A	ER NUMBÉR	1~19	19	OFF		ROOM SIZE	0.0 ~ 100.0 %	Leh DLY	0.1 ~ 1480.0 ms	125.0 ms	FB1 DLY	0.1 ~ 1480.0 ms	125.0 ms		OFF	-	Lch DLY	0.0 ~ 100.0 %	Leh DLY	0.1 ~ 1480.0 ms	FBIDIX	0.1 ~ 1480 0 ms	100.0 ms		OFF		Lch DLY	0.00
	Function	-Key		PARAM			PARAM			Ī	EXT CTRL ASSIGN			PARAM			PARAM		8			EXTOTRI			PABAM] ¥	10.4		line is a		ASSIGN	Service and the service of
SINGLE	Program Name		PROGRAMMABLE	83									DELAY L, R											DELAY L, C, R					Hart The				Water Control
S	Memory		17										- 18											- 61								65	

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU * 3: USER ~A, USER ~B, USER ~C, USER ~D

CTRL NO. PARAMETER NAME	N ~ INIW		-		\	1	\	\			OUTIVE	0.0 ~ 200%	100%		\	\							-00TLW	0.0 ~ 200%	100%		\			<u></u>		\		OUTLVL	0.0 ~ 200%	100%
PARAN	IMI		2	_	\		\	\	\		BALANCE	0.0 ~ 100 %	100 %			\		_	\		\		BALANCE	0.0 ~ 100 %	%001		\						\	BALANCE	0.0 ~ 100 %	100 %
EXT CTRL. ASSIGN			•	_	\				\			- FWE			\	\		\	\		\			LEVEL			\				OH	0.1 ~ 5.0	0.7] [4]	
8		8		\			\	\	_			\	\						\												HIGAIN	-15~+15dB	0 dB		\	\
Parameter Name Value Range Preset Value		7		\			\							FBGAIN	% 66 ~ 0	30%			\					\			\		\		HI FRO.	500 ~ 16 kHz	10 kHz		\	
	Parameter	9		\			\					\		PHASE	-180.0~ +180.0deg	+ 67.5 deg		\	\							\	\		\		HEQ	PEAK, SHLV	PEAK			
EVEL .		9	HGH	x 0.1 ~ x 1.0	6.0		\		\			\		MOD. DLY 2	0.1 ~ 100.0 ms -180.0~ +180.0deg	10.0 ms		\	_		\					1			\		TOM G	0.1 ~ 5.0	2.1		-	
		. 7	Rch F.B.	% 66 + ~ 66 -	+ 58 %	LPF FRQ.	*2	THRU						MOD. DEPTH 2	0 ~ 100 %	40 %		\								\			\		LOW GAIN	- 15 ~ + 15 dB	-6dB		\	
INT PARAM		3	RFB DLY	$0.1 \sim 740.0 \text{ms}$	178.0 ms	HRF FRO.	*1	THRU						MOD. DLY 1	0.1 ~ 100.0 ms	3.0 ms		_			\		\		AM. DEPTH	0 ~ 100 %	40%		\		- 40	4	700 Hz		\	
PASIAM		. 2	Leh F.B.	% 66 + ~ 66 -	% 09 +	RINI DLY	$0.1 \sim 740.0 \text{ms}$	0.1 ms			2	BALANCE		E	0 ~ 100 %	% 0.2	LPF FRQ.	*2	THRU		\		BALANCE	0.0 ~100.0 %	DM, DEPTH	0 ~ 100 %	20 %	LPF FRO.	*2	\rightarrow		PEAK, SHLV	PEAK	2	BALANCE 00~1000%	7 % A:001 ~ A:0
		-	LFBDLY	0.1 ~ 740.0 ms	170.0 ms	LINDLY	$0.1 \sim 740.0 \text{ms}$	0.1 ms	L	OFF	-	LFB DLY	0.0 ~ 100.0 %	MOD. FRQ.	0.05 ~ 40.0 Hz	1.45 Hz	HPE FRO.	1.	THRU			OFF	MOD. FRQ.	0.0 ~ 100.0 %	MOD. FRQ.	0.05 ~ 40.0 Hz	0.40 Hz	HPE FRQ.		THRU			•EQ	WOD COO	MOD. FRQ.	0,0,000 0.0
	Function	Key		PARAM			PARAM					ASSIGN			W.	1 200000	Sia:	INT			E0	200	ETG			рукун	- 4		PARAM			EO		Excellent in the second of the	rdaig	· Caronaggierong
SINGLE	Program Name		STEREO ECHO										0.000	SIEREO	TEANGE										CHORUS 1						1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1			11.0		A The Advantage and the analysis of the Association
SIS	Memory	No.	20											17						I.					22						7	1997	100000	28	<u>c</u> 5	an in the confidence of the confidence and the confidence of the c

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU

						N			N				-7110	1		*										<u> </u>						<u> </u>		De la companya della	
CTRL NO. PARAMETER NAME MIN ~ MAX				\	\		\	\			\	OUTLYL	8	100 %		\	\		\ _	· \		\	\	OUTLVL	0.0 ~ 200 %	85 %	\ 	_		\	\			OUT LVL	0.0 ~ 200 %
PARAMI		g.		\			\				\	BALANCE	0.0 ~ 100 %	100%		\			\	\		\		BALANCE	0.0 ~ 100 %	100 %		\		\	\			BALANCE	0.0 ~ 100 %
EXT CTRL ASSIGN	4	•		\			\			\	\		EAST			\				\					EAGT						\		\		TENE.
		•	•	\			\							\		\	· \			\		\			\			\		\			\		
Parameter Name Value Range Preset Value		7		\			\		HIGAIN	- 15 ~ + 15 dB	+2dB			\			\		\	\	LFO FRQ.	0.1 ~ 10.0 Hz	2.6 Hz		\					\	\		\		/
	Parameter	9		\			\		HI FRO.	500 ~ 16 kHz	6.3 kHz		\	\					\		0	LOW, HIGH	МОТ		/			\		\	\		\		
LEVEL		5					\		HI EQ	PEAK, SHLV	SHLV		\			\	_		\		GAIN * 4	* 5	+ 12 dB		\					\	\		<u> </u>		
[] 83		4		\			\		LOW GAIN	- 15 ~ + 15 dB	-2 dB		\			\			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	Е ОЕРТН	0 ~ 8 oct	3 oct		\					\			\		
INT PARAM		3	AM. DEPTH	0 ~ 100 %	45 %		\		LOW FRG.	32 ~ 2.2 KHz	315 Hz		\		MOD. DLY	0.1 ~ 5.0 ms	4.3 ms		\		FCENTER	32 ~ 16 kHz	2.0 KHz		_					\			<u> </u>		
РАВВАМ		2	DM, DEPTH.	0 ~ 100 %	% 0.2	LPF FRQ.	*2	14 kHz	LOW EQ	PEAK, SHLV	SHLV	2	BALANCE	0.00 ~100.0 %	МОВ. ВЕРТН	0 ~ 100 %	% 06	LPF FRQ.	*2	12 KHz	H.T.TYPE	£3	PEQ	. 2	BALANCE	0.0 ~100.0 %	0~100%	100 %	LPF FRQ.	*2	THRU			2	BALANCE 0.0 ~100.0 %
			MOD. FRQ	0.05 ~ 40.0 Hz	0.70 Hz	HPF FRQ.	-	THE			● EQ	-	MOD. FRQ	0.0 ~ 100.0 %	MOD, FRQ.	0.05 ~ 40.0 Hz	0.65 Hz	.HPF.FRQ.	-	THRU			●D. FLT		MOD. FRQ.	0.0 ~ 100.0 %	_	2.00 Hz	HPF FRQ.	*	THRU		#	1	MOD. FRQ 0.1 ~ 15.0 %
	Function	Key		7837			PARAM			EQ			EXT CTRI. ASSIGN			PARAM			INT			03			ZIA.		PARAM			PARAM	1	- G			EXTCTRI
	Program Name		CHORUS 2												STEREO	HASING										Olondar.	CHOCLO								
SINGLE	CONTRACTOR OF THE PARTY	O'married &														<u> </u>																7			
	Memory	No.	23												24											1	3								

Add-10

* 4: Display on = FLT TYPE = PEQ only * 5: -18, -12, -6, 6, 12, 18 (dB)

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU * 3: LPF, HPF, BPF, PEQ

CTRL No.	PAKAME EK NAME MIN ~ MAX		-		_						МПО	0.0 ~ 200 %	100 %		\	\		\	\			DITIN	0.0 ~ 200 %	100 %		\	_			\\		0.0 ~ 200 %	100 %
CTR	PARAME		10		\						BALANCE	0.0 ~ 100 %	100 %					\	\			BAI ANCE	0.0 ~ 100 %	100 %	2 LEVEL	0 ~ 100 %	100 %			\		.0.0 ~ 100 %	+
	EXT CTRL ASSIGN		6				,]		MODI TRG.	OFF, ON	OFF		\	_				[]		2F.B.	% 66 + ~ 66 -	%0					Eka .	1 4 8
			8		\							\		RELEASE	3 ~ 24000 ms	5 ms		\	\						2 DLY	0.1 ~ 650.0 ms	20.0 ms						
Value Range	Preset Value		2									\		атон 📄	1 ~ 24000 ms	90 ms			\						2 FINE	- 100 ~ + 100	-8					\	
		Parameter	9									\		DECAY LVL	0 ~ 100 %	100 %			\						2 PITCH	-24~+24	0		\	\		\	
0	_		- 2				\					\		DECAY	3 ~ 24000 ms	5 ms							\		1 Level	0 ~ 100 %	100 %					\	
0 :	EO		1									\		ATTACK	3 ~ 24000 ms	5 ms		\	/						1 E.B.	% 66 + ~ 66 -	0						
[] ½	PABAM		8											TRG. MSK	3	5 ms		\	/				\		1017	0.1 ~ 650.0 ms	0.1 ms					\	
	БАНАМ		2	MOD. DEPTH 0 ~ 100 %	% 09	LPF FRQ.	*2	IHHO			2	BALANCE	0.0 ~100.0 %	THG. DLY	-100.0~+100.0ms	– 7.0 ms	LPF FRQ.	*2	THRU			7	BALANCE	0.0 ~100.0 %	1 FINE	- 100 ~ + 100	8+		_	\		BALANCE	0.0 ~100.0 %
				MOD. FRQ. 0.05 ~ 40.0 Hz	0.70 Hz	HPF FRQ.	1.	ZH 067		OFF	1	MOD. DEPTH	0.00 ~ 100.0 %	TRG. LEVEL	0 ~ 100	65	HPF FRQ.	*	THRU		OFF		TRG. LEVEL	0.0 ~ 100.0 %	1 РТСН	-24 ~ +24	0	FBASE KEY	OFF, C1 ~ C6 C3	OFF	5	1 РІТСН	0.00 ~100.0 %
		Function	Key	PARAM			INT		[]			EXT CTRI. ASSIGN			PARAM			INT		s			EXT CTRL ASSIGN			PARAM				EO		EXT CTRI.	(1,0)
	SINGLE	Program Name		SYMPHONIC	349 37 5 7									ADR-NOISE	GAIE										PITCH	CHANGE 1							
	S	Memony	Vo	. 26										27											88								

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU

Section 1	1 Green	og Fantas	K			,				Totalians	,	т	Farai:			,									
CTRL No. PARAMETER NAME MIN ~ MAX		F		\						, OUT LVL	0.0 ~ 200 %	100 %	3017	0.1 ~ 1400.0 ms	0.1 ms					/			OUTLYL	0.0 ~ 500 %	100 %
PARAME MIN	23000	0.		\	· ·				\	BALANCE	-	100 %	3 FINE	-100 ~ + 100	+2								BALANCE	0.0 ~ 100 %	100 %
EXT CTRL ASSIGN		6											3 РТСН	-24~+24	- 5			1						LEWEL	
		8	R E.B.	% 66 + ~ 66 -	% 0							\	2 LEVEL	0 ~ 100 %	100 %			\ \ 						\	
Parameter Name Value Range Preset Value		, <u>, , , , , , , , , , , , , , , , , , </u>	RDLY	0.1 ~ 650.0 ms	0.1 ms							\	2 DLY	0.1 ~ 1400.0 ms	0.1 ms									\	
	Parameter	9	RFINE	- 100 ~ + 100	6-				\		\		2 FINE	- 100 ~ + 100	0			_						\	
" TENET		5	в РПСН	-24~+24	0						\ \ \		2 PITCH	-24 ~ +24	++							\		\	
[] a		4	L.F.B.	% 66 + ~ 66 -	%0						_		1 LEVEL	0 ~ 100 %	100 %									\	
INT PARAM		3	L DILY	0.1 ~ 650.0 ms	0.1 ms				\		\		1.01.4	0.1 ~ 1400.0 ms	0.1 ms			\						\	
PARAM		2	LFINE	- 100 ~ + 100	+11				/		BALANCE	0.00~100.0%	1 FINE	-100 ~ + 100	+ 2	-							2	BALANCE	0.0 ~100.0 %
			. L РТСН	-24~+24	0	BASE KEY	C3		OFF	1,	L PITCH	0.0 ~ 100.0 %	1 PTCH	-24 ~ +24	6+	12	3 LEVEL	0 ~ 100 % 100 %	BASEKEY	OFF, C1~C6 C3		OFF		1 PITCH	0.0 ~ 100.0 %
	Function	. Key		PARAM			PARAM				ÉXT CTRL ASSIGN					PARAM			. 🛮	PARAM	-[] 8			ASSIGN	
SINGLE	Program Name		PITCH	CHANGE 2				10.117					РТСН	e de la companya de				Ald Tale Sign		10					P. Company
SIN	Memory	No.	29	7									30										V 7 - 1		

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU

	5427	1 650	<u> </u>				T.		Tarac						<u> </u>		_			Silvenio					_							_
CTRI NO. PARAMETER NAME MIN ~ MAX		H		\					OUTLVL	0.0 ~ 200 %	100 %		\							OUTLVL	0.0 ~ 200 %	% 001							\	OUTLYL	0.0 ~ 200 %	100%
CT PARAME		10		\		\		\	BALANCE	0.0 ~ 100 %	100 %	PITCH FINE	- 100 ~ + 100	0						BALANCE	0.0 ~ 100 % 100 %	8 201								BALANCE	0.0 ~ 100 %	100 %
EXT CTRL SSIGN		6						\	Ī] [4]		РТСН	-24 ~ +24	0									\			\					LEVEL	
		8								\			0 ~ 1350 ms	1350 ms		1					\										_	
Parameter Name Value Range Preset Value		1		\								LOOP FINE	-200 ~ + 200	0									\								1	
"	Parameter	9		\				\		\		d001	0 ~ 1350 ms	1000 ms				\					\			\					\	
EVEL .	100	. 5		\								START	0 ~ 1350 ms	0 ms												\					\	
			-99 ~ + 99 %	%0								OVER DUB									\	L/R DEPTH	0 ~ 100 %	% 08		\					\	
INT PARAM		3	DELAY 0.1 ~ 1400.0 ms	0.1 ms						\		RECORD						\				Е В ОЕРТН	0 ~ 100 %	% 08		\				<u></u>	\	
PARAM 9		2	PITCH FINE -100 ~ + 100	0					7	BALANCE	0.0 ~ 100.0 %		위	- 50 ms				\		2 BALANCE	0.0 ~ 100.0 %	SPEED	0.05 ~ 40.00 Hz	0.50 Hz	LPF FRQ.	* 3	≅		0124 (COMP) 2 HO (COMP) 2 A A A A A A A A A A A A A A A A A A	2	BALANCE	2 20.00
		1	PITCH - 24 ~ + 24	0	BASE KEY OFF. C 1 ~ C 6	C3		OFF		PITCH	0.0 ~ 100.0 %	REC. MODE	MANUAL, AUTO	AUTO	BASEKEY	OFF, C.1 ~ C.6 C3			OFF	BEC MODE	0.0 ~ 100.0 %	PAN TYPE	* 1	L-TURN	HPF FRQ.	.2	HHU		OFF		0.0 ~100 0 %	20000
	Function	· Key	PARAM							EXTCTRL			PARAM	12.00		PARAM		8		EXTOTR			PARAM			PARAM		[] &			1029	- C 25-C 25 00
SINGLE	Program Name		MONO PITCH						200			FREEZE					HI STAN					PAN					1983	GEN SCHOOL	1.2. P. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		31016	NORMAN TOTAL SERVICE AND
SI	Метогу	No.	31		Ī							33					1	ž.				33						ă.			75	

* 1: L ¬ R, L ← R, L → R, L · TURN, R-TURN * 2: THRU, 32 Hz ~ 1.0 kHz * 3: 1.0 ~ 16 kHz, THRU

Add-13

	1 (394)	ga kusak	N			<u> </u>					3000	e l	_	1			N.																	No contra	
CTRL No: PARAMETER NAME MIN ~ MAX		F		\			\				ОПГМ	0.0 ~ 200 %	100 %			\							JAT LINO	0.0 ~ 200 %	100%		\							OUTLVL	0.0 ~ 200 %
PARAME MIN		0		\			\				BALANCE	0.0 ~ 100 %	100 %								\		BALANCE	0.0 ~ 100 %	100%		\		\	\		\		BALANCE	0.0 ~ 100 % 100 %
EXT CTRL ASSIGN		6	MIDI TRĢ.	OFF, ON	埢										1.6			\						IEVEL		\	\		\			\		0	- LEVEL
		8	L'R BALANCE	0~100%	30 %		<u></u>		\			\	\	DET.DLY	0.1 ~ 1400.0 ms -50.0 ~ +50.0 ms	0.0 ms					1			\			\								
Parameter Name Value Range Preset Value	7	2	DIRECTION	L→R,L←R	Ļ		\					\	\	DELAY		0.1 ms				\	-			\			\		\		HI GAIN	- 15 ~ + .15 dB	+ 6 dB	\	\
	Parameter	9 🔻	RELEASE	3 ~ 24000 ms	850 ms		\					\		EXPAND RATIO	1.0 ~ 5.0	2.0					\			\		1	\				H FRG.	500 ~ 16 kHz	3.2 kHz		
LEVER	1000000	S	PANNING	3 ~ 24000 ms	500 ms		\					_		EXPAND THRS	-72 ~ -30 dB	9 09 −									DELAY	0.1 ~ 1480.0 ms	0.1 ms				не	PEAK, SHLV	SHLV		
[] a		þ	АТТАСК	3 ~ 24000 ms	23 ms		\					\	\	RATIO	1.0 ~ 20.0	5.0		\.						\	TREBLE	В	+2 dB		\		LOW GAIN	-15~+15dB	+12 dB		
INT PARAM		3	1600	3~24000 ms	1000 ms		,					\	·	THRESHOLD	-48 ~ -6 dB	- 24 dB		\			\			\	MID GAIN	-12~+12dB	+6 dB				LOW FRO.	32 ~ 2.2 kHz	200 Hz		
PARAM		2	TRG. DLY	-100.0~+100.0ms	– 10.0 ms	LPF FRG.	7 I I I I I	Quille	_		7	BALANCE	0.0 ~ 100.0 %	RELEASE	10 ~ 2000 ms	200 ms		\			\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	00.40000	MID FRO.	250Hz ~ 5.6KHz	355 Hz	RELEASE	3 ~ 24000 ms	850 ms	LOW EQ	PEAK, SHLV	SHLV	2	0.0 ~100.0 %
			TRG. LEVEL	1 ~ 100	92	HPF FRQ.	- I I I I I	OUIII		OFF		TRG. LEVEL	0.0 ~ 100.0 %	ATTACK	1 ~ 40 ms	18 ms	DET. HPF	*3	THRU		L	<u></u>	АТТАСК	00~1000%	DISTORTION	0 ~ 100 %	% 86	TRG. LEVEL	0~100	29			•EQ	1	0.0 ~100.0 %
	Function	Key		PARAM		1	PARAM				:[EXT CTRL ASSIGN		Ī	PARAM			INT Param	-		8.		EN CIR	ASSIGN		PASAM		Ī	INT PARAM			EO			ASSIGN
SINGLE	Program Name		TRIGGERED	AN .										COMPRESSOR					I						DISTORTION				1					5	2 2
Nis	Memory	No.	34						er c					35											36									A	

Add-14

* 1: THRU, 32 Hz ~ 1.0 kHz * 2: 1.0 ~ 16 kHz, THRU * 3: THRU, 500 Hz ~ 8.0 kHz

rae9834	<u> </u>	170/1 n n				,		 				
CTRL NO. PARAMETER NAME MIN ~ MAX		7		\	\					OUTLYL	0.0 ~ 500 %	100%
PARAMI MIN		•		_						BALANCE	0.0 ~ 100 %	100 %
EXT CTR. ASSIGN		0		_	\			_			LEVEL	
•		8		\	\		\	_			\	
Parameter Name Value Range Preset Value				\	\						\	
11	Parameter	9			\						\	
LEVEL.		9			\						\	
g .		4	DELAY	0.1 ~ 740.0 ms	2.0 ms						\	
INT		3	MIX LVL	.0 ~ 100 %	100 %						\	
PARAM		. 2	ENHANCE	0 ~ 100 %	% 08			\		2	MIX LVL	0.0 ~ 100.0 %
		-	нРЕ ГПО.	500 Hz ~ 16 kHz	8.0 KHz	NOT AVAILABLE			OFF	-	HPF FRQ	0.00 ~ 100.0 %
	Function	Key		PARAM			Parkin				ASSIGN)
Щ	Memory Program Name Function		AURAL EXCITER									
SINGLE	Memory	Ŋ	37 A									

						•																								
.No. ER NAME MAX		ų	N.OLY	0.1 ~ 200.0 ms	10.0 ms			\				\		OUTIN	0.0 ~ 200 %	100 %	RV. DLY	0.1 ~ 200.0 ms	10.0 ms		\			\				-	OUT LVL	100 %
CTRL No. PARAMETER NAME MIN ~ MAX		0	RV. HIGH	0.1 ~ 1.0	0.7									BALANCE	0.0 ~ 100 %	100 %	RV. HIGH	0.1~1.0	0.7				RELEASE	3 ~ 24000 ms	106 ms		\	1	BALANCE 00~100%	100 %
EXT CTRL ASSIGN		6	RV.RT	0.3 ~ 480.0 s	2.6 s						ИО	0.1 ~ 5.0	0.7		LEVEL		M'.RT	0.3 ~ 480.0 s	1.2 s				TRG, LEVEL	0~100	35	HΩ	0.1 ~ 5.0	0.7		
		8	EC. INDLY	0.1 ~ 700.0 ms	10.0 ms			\			HIGAIN	- 15 ~ +15 dB	0		\		EC. INDLY	0.1 ~ 700.0 ms	0.1 ms				OI. TRBL	-12 ~ +12 dB	+2dB	HIGAIN	-15~+15dB	0 dB		
Parameter Name Value Range Preset Value		7	EC. HIGH	×0.1~×1.0	6.0						HI FRO	500 ~ 16 kHz	10 kHz				ЕС. НІСН	×0.1 ~×1.0	0.7				DIMID C	-12 ~ +12 dB	+2 dB	HFRQ	500 ~ 16 kHz	6.3 KHz		
	Parameter	9	EC. F.B	% 66 + ~ 66 -	+ 52 %						HIED	PEAK, SHLV	PEAK		\		EC F.B	% 66 + ~ 66 -	+ 35 %				DI, MD F	250 Hz~5.6 KHz	450 Hz		PEAK, SHLV	PEAK		
II EVE		9	EC. FBDLY	0.1 ~ 700.0 ms	461.5 ms						TOW D	0.1 ~ 5.0	0.7		\		EC. FBDLY	0.1 ~ 700.0 ms	480.0 тs		\	_	DI, DIST	0 ~ 100 %	% 0.2	LOWQ	0.1 ~ 5.0	0.7		1
<u> </u>		4	CODIECRV	O RV. ■ RV	₩			\			LOW GAIN	- 15 ~ +15 dB	+2 dB		\		CO DI EC RV	O RV, 🖢 RV	VH ●				CO. RATIO		7.0	LOWGAIN	- 15 ~ +15 dB	+6 dB		
INT		2	SRV CODIECRY	OEC, ● EC	●			\			LOWFRG	32 ~ 2.2 kHz	280 Hz				CODIECRY	O EC, ● EC	O∃ €				CO. THRSLD		-16 dB	LOWFRO	32 ~ 2.2 kHz	250 Hz		
PARAM		3	CODIECRY	Id €,Id⊙	10 O			\	RELEASE	3 ~ 24000 ms	LOWEQ	PEAK, SHLV	PEAK	2	RV. RT	0.0 ~ 100 .0 %	CO DI EC RV	O DI, ● Di	io e				CO. RELS		200 ms	LOWEG	PEAK, SHLV	PEAK	2	0.0 ~ 100 .0 %
			CO DI EC RV	00,000	8	- 15	RVWX	% no ~ n	TH	0 ~ 100	30		• E0		EC. F. B	0.0 ~ 100 .0 %	CO DI EC RV	00, € 00	8	- 12	. BV MX	0~100% 25%	CO. ATTACK		20 ms			• 50	Total of	0.0 ~ 100.0 %
	n (o) (o) (i) E	163				Рукам				PARAM		<u> </u>]:		EXT CTRL ASSIGN					PARAM]			I.M.	E CASTON] a			ASSIGN
	新教			W.							=[* ·					*	_	:4/2				77.I 74.				1 2 3 3 4				
	President Value			ECHRABIVI													MULTI	(ECH&REV)2			18									
MULTI								-																						
	Memnin	9	8														39													

								Parameter Name	•			GTR! NA
MULTI		4	PARAM	INT] 8] Hever	"	Value Range		EXT CIR.	PARAME	PARAMETER NAME
77,782	400.00							Preset Value		ASSIGN	MIN	MIN ~ MAX
melilory Program name	distractives.	Function					Parameter					
l		Key 1	2	3	P	9	9		8	ļ	6 7	
40 MULT		CO DI CH RV	CODICHRY	CODICHRY	CODICHRY	CH. FRO	CH NM DEPT	CH DM DEPTH CH AMINEDTU	1	a 10	0	1
(CHO&REV)1		PABANI O CO, ● CO	IO DI, ● DI	O.유. ●	ORV • RV	0.05 ~ 40.00 Hz	7000	CIT AM VERTIC	11_	нон ж	RV. DLY	RV. MIX
		03 🖣		ਲ •	- BN	0.00 40.00 IL	% 001 20 % 09	% 00L ~ 0	0.3 ~ 480.0 s	0.1~1.0	0.1 ~ 800.0 ms	0 ~ 100 %
	Ľ	CO. ATTACK	CO. RELS	CO. THRS! D	CO RATIO	TDG CITE	or vo	%.0c	2.0.5	0.8	10.0 ms	25 %
	Ni.		├ ─	-42 ~ -12 dB	10~200	MG. LEVEL	HELEASE	\	\ _	_	\	
			200 ms	-12 dB	10	001 20	3 ~ 24000 ms	\	\	\	\	\
		142	LOW FO	Can NO I	e e e e e e e e e e e e e e e e e e e	67	I UO IIIS	7				
] 2		PEAK SHI V	30 ~ 00 ku-	LOW GAIN	o wor	НЕО	HI FRO	HI GAIN.	ВΩ		
		0 0	,	2C 2.1	SD CI + ~ CI -	0.1 ~ 5.0	PEAK, SHLV	500 ~ 16 kHz	~15 ~ +15 dB	0.1 ~ 5.0	\	_
	1		PEAK	800 Hz	4 dB	3.9	PEAK	8.0 kHz	46 dB	0.4	\	
	EXTOR		7								BALANCE	OILLW
	ASSI		BALANCE	\	\	\	\	\	\	LEVEL	0.0 ~ 100 %	% UUC ~ U U
		% 0.00T ~ U.0	0.0 ~ 100.0 %			\	\	\	\		7000	0.0 200 %
41 WUT			CODICHRY	СОПСНВУ	CO DI CH RV	CH, FRQ	CH. DM DEPTH	CH. DM DEPTH CH. AM DEPTH	TO VO	or alon	% 001	200 %
(CHUĞHEV)Z	-V/Z	000 €00	ODI, DDI	OCH, CH	ORV. RV	0.05 ~ 40 00 Hz	0 ~ 100 %	/000F 0	10.40	מאי שוכיאי	HV. DLY	RV.MIX
] <u>.</u>	8	IQ 🖜	- 5	\neg	0 60 Hz	0,001	% 001 ~ 0	0.3 ~ 480.0 s	0.1 ~ 1.0	0.1 ~ 800.0 ms	0~100%
		CO ATTACK	CO DEL G	CO TUBBI D	::: >	200.0	% 06	30 %	2.6 s	0.7	20.0 ms	25 %
	(IN		200,00	CO. IGNOLD	CU. HAILO	DI. DIST	DI, MID F	DI, MID G	DI. TRBL	TRG. LEVEL	RELEASE	
	PAHA	Ant.	10 ~ 1000 ms	-42 ~ -12 dB	1.0 ~ 20.0	0~100%	250 Hz~5.6 kHz	-12 ~ +12 dB	-12 ~ +12 dB	0~100	3 ~ 24000 ms	· ·
	l	23 MS	300 ms	-18 dB	5.0	100 %	260 Hz	+ 6 dB	0 dB	6	106 mg	\
1 K. 100			LOW EQ		LOW GAIN	LOWO	HI EO	HI FRO	HIGAIN	PIN	SIII OO	
		4.1812	PEAK, SHLV	32 ~ 2.2 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	PEAK, SHLV	500 ~ 16 kHz	-15 ~ +15 dB	01.50	\	\
		• EQ	PEAK	315 Hz	+6 dB	0.7	PEAK	7.0 kHz	2 2 2	200	\	<u> </u>
			. 2					21 22 22	ano+	0./		
	EXT CITAL	TSIO IO	BALANCE	\	\	\	\	\			BALANCE	OUT LYL
			0.0 ~ 100 .0 %	\	\	\	\	\	\	LEVEL	0.0 ~ 100 %	0.0 ~ 200 %
42 MULTI		CO DI CH RV	CO DI CH BV	CONCHE							700 %	100 %
(CHO&REV)3	V)3 PARAM		id ● id ○	3		2.02	CH, UM DEPTH CH, AM DEPTH	CH. AM DEPTH	RV. RT	RV. HIGH	RV. DLY	RV. MIX
		HIS G	5 IC	+		0.05 ~ 40.00 Hz	0 ~ 100 %	0 ~ 100 %	0.3 ~ 480.0 s	0.1 ~ 1.0	0.1 ~ 800.0 ms	0 ~ 100 %
		3 2	in D	5	Constant in	0.80 Hz	% 09	40%	2.4 s	0.7	20.0 ms	16%
			DIN NO E	DI. MID G	р. тявс	TRG, LEVEL	RELEASE					800
	PARAM	0	250 Hz~5.6 kHz	~12.~ +12 dB	-12 ~ +12 dB	0~100	3 ~ 24000 ms	\	\	\	\	\
The second second		20 %	240 DS	+ 6 dB	SIP 0	35	106 ms	\	\	\	\	\
			FLTTME	FCENTER	FDEPTH	GAIN * 2		1 EO EDA				
	Q		F.	32 ~ 16 kHz	0 ~ 8 oct	*3	2	1001.1001.	\	\	\	_
		- • D. FLT	PEQ	50 Hz	to C	go 01 -	+	0.1 ~ 10.0 HZ	\	\	\	\
	*	1 1				21 5 UD	LDIE.	2.5 KHz				
H	EXT CIRIL ASSIGN	FCENTER	DI DIST	\	\	\	\				BALANCE	OUTLYL
Market State of the Control of the C		9.0 ~ 65.0 %	0.0 ~ 100 %	<u> </u>		_		\	<u> </u>	- LEVEL	0.0 ~ 100 %	0.0 ~ 200 %
* 1: LPF, HPF, BPF, PEO	PEO										100 %	100 %
2: Display on = FLT TYPE = PEQ only	TYPE = PEQ or	νļυ										
3:-18,-12,-6,6,	12, 18 (dB)											

Add-17

U
COLICE OF COLICE OF
O Di, ● Di
S ● Id ⊙
CO. RELS CO. THRSLD
9 ms 200 ms -42 ~-12 dB 1.0 ~ 20.0
LÓW EQ LOW FRO. LÓW GÁIN
PEAK, SHLV 32 ~ 2.2 kHz - 15
● EQ PEAK 315 Hz 0 dB
SY. DEPTH BALANCE SON 100.0% 0.0~100.0%
CODISY RV CODISY RV CODISY RV CODISY RV
PARCENT Q CO, Q CO Q DI, Q DI Q SY, Q SY Q RV, Q RV
3
TRG LEVEL
######################################
32 ~ 2.2 KHz
100 Hz
Exicine SY. DEPTH BALANCE Assign
0.0 ~ 100 .0 % 0.0 ~ 100 .0 %
CO DI SY RV CO DI SY RV
O CO, ● CO O DI, ● DI O SY, ● SY O
S O DI O SY
CO. IHASLD
1~40 ms 10~1000 ms -4
23 ms 500 ms
LOW EQ LOW FRO
• EQ
2 2 2 2 2 2 2 2 2 2
0.0 ~ 100.0 % 0.0

				0					Parameter Name			E CH	CTRL No.
IW	I I II II			РАВАМ	INT	9	LEVEL	1	Value Range		EXT CTRL =	PARAMET	PARAMETER NAME
MC	JL11]			Preset Value		, north	MIN	MIN ~ MAX
Memory	Program Name Function	Function						Parameter					
No.		Key		2	- 3	7	. 5	9		8	6	9	
46	- HUEA		CO DI EX RV	CODIEX RV	CO DI EX RV	CO DI EX RV	EX. HPF F	EX. ENHANCE	EX. MIXL'VL	N.M	RV. HIGH	RV. DL.Y	RV. MIX
	(EXC&REV)1	PARAM	00, €00	ODI, ● DI	O EX, ● EX	O RV, ● RV	500 Hz~16.0 kHz	0 ~ 100 %	0 ~ 100 %	0.3 ~ 480.0 s	0.1 ~ 1.0	0.1 ~ 800.0 ms	0 ~ 100 %
A			8	IQ O	EX	■ RV	2.0 kHz	40 %	% 09	2.0 s	8:0	20.0 ms	20 %
			CO. ATTACK	CO. RELS	CO. THRSLD	CO. RATIO	TRG. LEVEL	RELEASE					
		INT	1 ~ 40 ms	10 ~ 1000 ms	-42 ~ -12 dB	1.0 ~ 20.0	0~100	3 ~ 24000 ms	\	_	\		
			18 ms	300 ms	-12 dB	1.5	26	106 ms	\			\	\
				LOW EQ	LOW FRQ	LOWGAIN	_ LOW Q	H EQ	HIFRO	HI GAIN	HIQ		
		E0		PEAK, SHLV	32 ~ 2.2 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	PEAK, SHLV	500 ~ 16 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	1	\
			● EQ	PEAK	100 Hz	990	7.0	PEAK	9.0 kHz	+2dB	0.7	\	\
				2								BALANCE	OUTLVL
		EXT CTRL ASSIGN	EX. HPF F	BRANCE	\	\	\	\	\	\	TEVEL	0.0 ~ 100 %	0.0 ~ 500 %
			0.0 ~ 100.0 %	0.0 ~ 100 .0 %				\		\		100 %	100 %
47	MUCT		CO DI EX RV	CO DI EX RV	CO DI EX RV	CO DI EX RV	EX.HPFF	EX. ENHANCE EX. MIX LVI.	EX. MIX LVL	RV. RT	RV. HIGH	RV. DL.Y	RV. MIX
	(EXC&REV)2	РАВАМ	00, €00	ODI, ●DI	ΩEX, ⊕EX	O RV, ● RV	500 Hz~16.0 kHz	0 ~ 100 %	0 ~ 100 %	0.3 ~ 480.0 s	0.1 ~ 1.0	0.1 ~ 800.0 ms	0 ~ 100 %
	I		00	[G ●	● EX	■ RV	6.3 kHz	45 %	20 %	1.2 s	0.5	10.0 ms	24 %
			CO. ATTACK	CO. RELS	CO. THRSLD	CO. RATIO	DI. DIST	DI, MID F	DI. MID G	DI. TRBL	TRG. LEVEL	RELEASE	
		PARAM	1 ~ 40 ms	10 ~ 1000 ms	-42 ~ -12 dB	1.0 ~ 20.0	0~100%	250 Hz ~ 5.6 kHz	-12 ~ +12 dB	-12 ~ +12 dB	0~100	3 ~ 24000 ms	\
			10 ms	200 ms	-13 dB	3.0	% 29	315 Hz	46 dB	+2 dB	30	106 ms	\
			of Control Colonia Control Section (Control Colonia)	LOW EQ	LOW FRG	LOW GÀIN	LOWQ	HIEG	. HI FRQ	HI GAIN.	НО		
		8		PEAK, SHLV	32 ~ 2.2 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	PEAK, SHLV	500 ~ 16 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	\	\
			• E0	PEAK	220 Hz	+6 dB	9.0	PEAK	6.3 kHz	+4 dB	0.3		\
				2								BALANCE	
		EXT CTRIL ASSIGN	DI. DIST	EX. HPF F	\	\	\	\	\	\] 씨	0.0 ~ 100 %	0.0 ~ 200 %
		100-000	0.0 ~ 100.0 %	0.0 ~ 100.0 %	\	\		_	\	\		100 %	100%

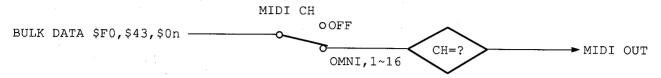
						•			*.																				
CTRL NO. PARAMETER NAME MIN ~ MAX				\	\		\	\ \	\	\	2. OUT LVL	0.0 ~ 200 %	130 %		\	\		\		2. LOW Q	0.1 ~ 5.0	9.0				\	2.0UTLVL	0.0 ~ 200 %	200 %
CTR PARAME		10					\	\.			2. BALANCE	0.0 ~ 100 %	100 %			\		\	\	2.LOW.G	- 15 ~ +15 dB	ap 0			\		2. BALANCE	0.0 ~ 100 %	100 %
Ext CfRL =		6			\ \		\				1.00 T LVL	0.0 ~500 %	130 %	REVOLY	0.1 ~ 300.0 ms	30.0 ms		\		2. LOW F	32 ~ 2.2 kHz	125 Hz			\		1.00TLVL	0.0 ~500 %	75 %
		8	HALDLY	0.1 ~ 200.0 ms	30.0 ms			\			1. BALANCE	0.0 ~ 100 %	100 %	SHO VER	0 ~ 10	10		\	\	2. LOW EQ	PEAK, SHLV	PEAK			\		1. BALANCE	0.0 ~ 100 %	100 %
Parameter Name Value Range Preset Value		7	HAL DIFF	0 ~ 10	5		\	\	,	/				ніян	0.1 ~ 1.0	1.0		\		1.HIGH G	- 15 ~ +15 dB	0 dB] 閩,	
	Parameter	9	HAL HIGH	0.1 ~ 10	9.0		\	_		/				REVTINE	0.3 ~ 480.0 s	1.4 s		_		THE.	500 ~ 16 kHz	12 kHz			\	\		\	\
		9	HAL RT	0.3 ~ 480.0 s	2.6 s		\	_	\	\		\		EROLY	0.1 ~ 300.0 тs	160.0 ms		\	<u> </u>	1.HEQ	PEAK, SHLV	SHLV			\	\		\	<u> </u>
		7	PLTDLY	0.1 ~ 200.0 ms	10.0 ms		\	····	\.	_		\		ERDIFF	0 ~ 10	10			, \ \	1.LOW G	- 15 ~ +15 dB	+2dB			\			\	· \
INT		3	PLT DIFF	0~10	ည	HALLPF	*1	8.0 kHz	\	\		\		LIVENESS	0 ~ 10	10		\	_	1.LOW F	32 ~ 2.2 kHz	100 Hz	11	2.Н.С	- 15 ~ +15 dB	+ 4 dB		\	_
PAÑAM 9		2	PLTHIGH	0.1 ~ 1.0	9.0	PLTLPF	1.	8.0 kHz	\		2	HAL RT	0.0 ~ 100.0 %	ROOM SIZE	0.1 ~ 10.0	3.2	REVLPF	. 2	16 KHz	1.LOWEQ	PEAK, SHLV	ATHS	- 13	2. HIF	500 ~ 16 kHz	8.0 kHz	7.5	REV TIME	0.0 ~ 100 .0 %
			PLTRE	0.3 ~ 480.0 s	2.6 s	OUT MODE	ST, MONO x 2	ST		OFF	1	PLTRT	0.0 ~ 100.0 %	ERTYPE.	.2	RANDOM	OUT MODE	ST, MONO x 2	ST			• • EQ	. 12	2.HIEG	PEAK, SHLV	SHLV	J	ROOM SIZE	0.0 ~ 100.0 %
	Function	Key		РАВАМ			Parak		. E0		Ī	EXTCTRL			PARMI		Ī	INT					8			100		EXTCRE	
DUAL	Program Name		PLATE+HALL											ER+REV						1970									
2	Memory	Š	48			g mil								67	7						1								

*1: 1.0 ~ 16 kHz, THRU *2: S-HALL, L-HALL, RANDOM, REVERSE, PLATE, SPRING

				PARAM					Parameter Name Value Range		, I	PARAME	PARAMETER NAME
DUAL , PARAM ,	PARAM	PARAM	PARAM 9	PARAM					Preset Value		ASSIGN	MIN	MIN ~ MAX
Memory Program Name Function	Function							Parameter	70 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1		100 Mg/m		
Key 1 2 3	1 2			8	M	7	5	9		8	6	9	Ţ
ECHO+REV LFB DLY Lch F.B. RFB DLY	LFB DLY Leh F.B.	Loh F.B.	6	RFB DLY	16	Rch F.B	ЕСНО НІСН	REV TIME	REV HIGH	REV DIFF	REVOLY		
PARAM 0.1 ~ 350.0 ms -99 ~ +99% 0.1 ~ 350.0 ms	0.1 ~ 350.0 ms -99 ~ +99%	%66+ ~ 66-	\dashv	0.1 ~ 350.0 n	2	%66+ ~ 66 -	0.1~1.0	0.3 ~ 480.0 s	0.1 ~ 1.0	0~10	0.1 ~ 200.0 ms		\
300.0 ms + 38 % 333.3 ms	+ 38 %	+ 38 %		333.3 ms		+ 38 %	8.0	2.6 s	0.7	10	30.0 ms	\	\
OUT MODE LINI DLY RINI DLY	OUT MODE LINI DLY	FINI DLY	۲.	RINI DLY	201	REVLPF							
ST, MONO x 2 0.1 ~ 350.0 ms 0.1 ~ 350.0 ms	ST, MONO x 2 0.1 ~ 350.0 ms	0.1 ~ 350.0 ms	0.1 ~ 350.0 ms		-	+1	\	\	\	\	,		
ST 0.1 ms 0.1 ms	0.1 ms	0.1 ms		0.1 ms		10 kHz	\			_	\	\	\
					K .								
OFF OFF	OFF	OFF				\						\	
The state of the s	7	7	2							1. BALANCE	1. OUT LVL	2. BALANCE	2.0UT.LNL
da	LFB DLY REV TIN	REV TIN	REV TIME	\		\	\	\	LEVEL	0.0 ~ 100 %	0.0 ~200 %	0.0 ~ 100 %	0.0 ~ 200 %
0.0 ~ 100.0 % 0.0 ~ 100.0 %	0.0 ~ 100.0 %	0.0 ~ 100.0 %	0.00 ~ 100.0 %		\dashv					% 0.2	100 %	% 46	100 %

* 1: THRU, 32 Hz ~ 1.0 kHz

9					the case of the spirits and the second						
	Key 1		2	3	4	5	. 6	7	8	9	10
	EQ / OFF / D. FLT	/D. FLT	LOW EQ	LOW FRQ	LOW GAIN	LOWQ	HIEG	HIFRO	HI GAIN	OIH	FLT TYPE
TYPE	EQ/OFF/D. FLT	/D. FLT	PEAK, SHLV	32 ~ 2.2 kHz	– 15 ~ +15 dB	0.1 ~ 5.0	PEAK, SHLV	500 ~ 16 kHz	-15 ~ +15 dB	0.1 ~ 5.0	*2
North Control									,-		
OSpays 2 ~ 3	Ţ	- T	.12	- 13	- 14	. 15				,	
	↑ F CENTER	TER	F DEPTH	GAIN*3	Ø	LFO FRQ					
1 1 - 47 Displays 10 - 15	32 ~ 16 KHz	6 kHz	0 ~ 8 oct	*1	LOW, HIGH	0.1 ~ 10.0 Hz				\	\
on D. FLT											
	.										
[DUAL TYPE	EQ/OFF/D, EU	100000	1 LOW EQ	1LOW F	110WG	TLOWG	1HIEO	THIF	- 1HIG	11110	2 LOW EQ
	EQ/OFF/D.FLT	-	PEAK, SHLV	32 ~ 2.2 kHz	-15 ~ +15 dB	0.1 ~ 5.0	PEAK, SHLV	500 ~ 16 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	PEAK / SHLV
Displays 2 ~ 17											
3 5 6	Ŧ	1	12	-13	- 14	15		- 17	18	19	20
	2 LOW F	WF	2 LOW G	2 LOW Q	2 HI EQ	2 HI F	2 HI G	2 HI Q	FLT TYPE	F CENTER	F DEPTH
40 ~ 50 _ Displays 18 ~ 23	32 ~ 2.2 KHz	.2 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	PEAK, SHLV	500 ~ 16 kHz	- 15 ~ +15 dB	0.1 ~ 5.0	*3	32 ~ 16 kHz	0 ~ 8 oct
									,		
	F .	74	22	23							
	GAIN * 3	6*3	Ø	LFO FRQ.							
	1.		LOW, HIGH	0.1 ~ 10.0 Hz		\			\		
				:		\			\	_	\ \


* 1 = -18, -12, -6, 6, 12, 18 (dB)

* 2 = LPF, HPF, BPF, PEQ

* 3 = Display on = FLT TYPE = PEQ only

MIDI DATA FORMAT

1. Transmitting Conditions

2. Transmitting Data

2.1 System information

1) System Exclusive Messages

① MEMORY BULK DATA

MIDI DATA FORMAT Transmission is enabled on the MIDI channel of the currently selected bank. Data is transmitted when BULK OUT 1 is displayed and BULK OUT is executed, and when the MEMORY BULK DUMP REQUEST message is received. The data to be transmitted is the program of the memory number indicated. If the memory number is "*", data is sent from Memory 51 to Memory 99 in succession.

① DONNEES DE BLOC DE MEMOIRES

La transmission du format des données MIDI (MIDI DATA FORMAT) est validée sur le canal MIDI du bank actuellement sélectionné. Les données sont transmises lorsque BULK OUT1 est affiché et BULK OUT est exécuté ainsi que lorsque le message "MEMORY BULK DUMP REQUEST" (demande de vidage de bloc de mémoire) est reçu. Les données à transmettre sont le programme du numéro de mémoire indiqué. Si le numéro de mémoire est "*", les données sont transmises de la mémoire 51 à la mémoire 99 à la suite les unes des autres.

① Speicherblockdaten

Die Übertragung erfolgt auf dem Kanal der gerade angewählten Bank. Wird die Meldung "BULK OUT 1" angezeigt nd geht ein Blockabwurfbefehl (Bulk dump request) ein, so wird ein Blockabwurf (Bulk dump) ausgeführt. Es werden dann die Daten übertragen, deren Speichernummer gerade angezeigt wird. Lautet die Speichernummer "*", werden alle Benutzer-Speicher (51~99) der Reihe nach gesendet.

STATUS ID No.	11110000(FOH) 01000011(43H)
SUB STATUS	0000nnnn(0nH) n=0(channel number1)~15 (channel number16)
FORMAT No.	01111110 (7EH)
BYTE COUNT	0000010(02H)
BYTE COUNT	00001010(0AH)
•	01001100(4CH)"L"
	01001101 (4DH) "M"
	00100000 (20H) SPACE
	00100000 (20H) SPACE
	00111000(38H) "8"
•	00110110(36H)"6"
	00110011 (33H) "3"
	00110110(36H) "6"
DATA NAME	01001101(4DH)"M"
MEMORY	Ommmmmmm M=1 (MEMORY No.1)~99 (MEMORY No.99)
DATA	0dddddd
	256BYTE
	0dddddd
CHECK SUM	0eeeeee
EOX	11110111 (F7H)

- ② Bank Program Change Chart Bulk Data
 Transmission is enabled on the MIDI channel of the currently selected bank. Data
 is transmitted when BULK OUT 1 is displayed and BULK OUT is executed, and when
 the PROGRAM CHANGE CHART BULK DUMP REQUEST message is received. The data to be
 transmitted is the program change chart (the chart showing the correspondence
 between program numbers and memory numbers). If the bank number is "*", the data
 from banks 1 4 (A D) is transmitted in succession.
- ② Données en bloc de la table des changements de programme du bank (Bank Programm Change Chart Bulk Data)
 La transmission est possible sur le canal MIDI du bank actuellement sélectionné, Les données sont transmises lorsque BULK OUT1 est affiché et BULK OUT est exécuté ainsi que lorsque le message PROGRAM CHANGE CHART BULK DUMP REQUEST (demande de vidage en bloc de la table des changements de programme) est reçu. Les données à transmettre sont le tableau des changements de programme (le tableau indiquant la correspondance entre le numéros de programme et les numéros de mémoire). Si le numéro de programme est "*", les données des banks 1-4 (A-D) sont transmises les unes après les autres.
- ② Blockdaten der Programmwechsel-Zuordnungstabelle einer Bank
 Die Übertragung erfolgt auf dem Kanal der gerade angewählten Bank. Wird die
 Meldung "BULK OUT 2" angezeigt und geht ein Blockabwurfbefehl der
 Programmwechsel-Zuordnungstabelle (Program change chart bulk dump request) ein,
 so wird der Abwurf ausgeführt. Es werden dann die Daten der ProgrammwechselZuordnungstabelle übertragen. (In dieser Tabelle wird jeder Speichernummer des
 SPX1000 eine MIDI-Programmwechselnummer zugeordnet). Lautet die Banknummer "*",
 werden die Daten aller Bänke (A~D) der Reihe nach gesendet.

STATUS ID No. SUB STATUS FORMAT No.	11110000 (F0H) 01000011 (43H) 0000nnnn (0nH) 01111110 (7EH)	n=0(channel number	r1)~15 (channel number16)
BYTE COUNT	00000001 (01H)		
BYTE COUNT	00001010(0AH)		
	01001100(4CH)"L"		
	01001101(4DH)"M"	-	
	00100000 (20H) SPACE		
	00100000 (20H) SPACE		
	00111000(38H)"8"	+ s	
	00110110(36H)"6"		
	00110011 (33H) "3"		
	00110110(36H)"6"	•	
DATA NAME	01010100 (54H) "T"	•	
BANK No.	0zzzzzz	Z=BANK 1~4 (1=A, 2=	=B, 3=C, 4=D)
DATA	Oddddddd		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E	
	Oddddddd		
CHECK SUM	0eeeeee		in the state of th
EOX	11110111 (F7H)		

3 User ER Pattern Bulk Data

Transmission is enabled on the MIDI channel of the currently selected bank. Data is transmitted when BULK OUT 2 is displayed and BULK OUT is executed, and when the USER ER PATTERN BULK DUMP REQUEST message is received. The data to be transmitted is that of the indicated pattern number. If the pattern number is "*", patterns 1 - 4 (A - D) are transmitted in succession.

3 Données en bloc de motifs USER ER.

La transmission est validée sur le canal MIDI du bank actuellement sélectionné. Les données sont transmises lorsque BULK OUT 2 est affiché et BULK OUT est exécuté ainsi que lorsque le message USER ER PATTERN BULK DUMP REQUEST (demande de vidage en bloc de motifs de réflexions précoces de l'utilisateur) est reçu. Les données à transmettre sont celles des numéros de motifs indiqués. Si le numéro de motif est "*", les motifs 1-4 (A-D) sont transmis l'un après l'autre.

③ User ER-Programmblockdaten

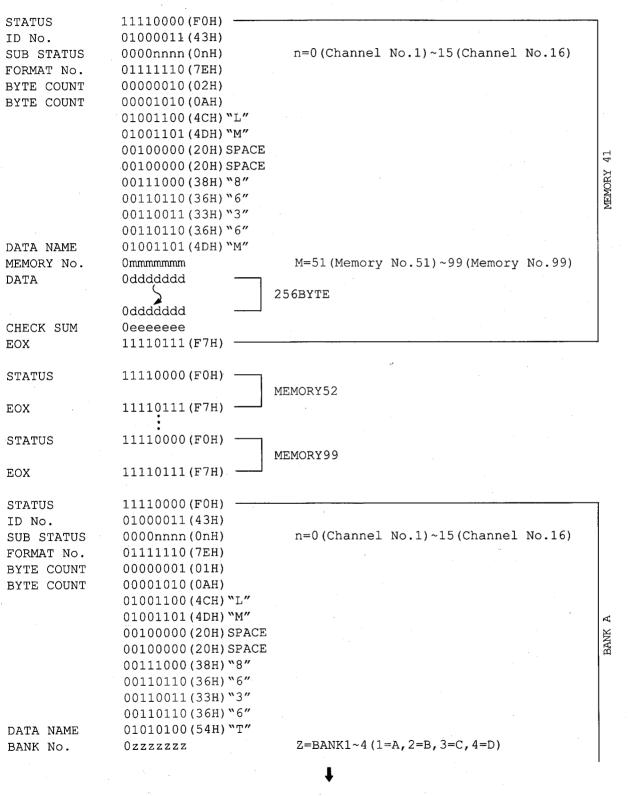
Die Übertragung erfolgt auf dem Kanal der gerade angewählten Bank. Wird die Meldung "BULK OUT 2" angezeigt und geht ein Blockabwurfbefehl der Erstreflexions-Musterprogramme (User ER pattern bulk dump request) ein, so wird der Abwurf ausgeführt. Es werden dann die Daten des angezeigten Speichers übertragen. Lautet die Speichernummer "*", werden die Daten aller vier User-Speicher (A~D) der Reihe nach gesendet.

STATUS	11110000 (FOH)			
ID No.	01000011(43H)			
SUB STATUS	0000nnnn (0nH)	n=0 (Channel	No.1)~15 (Channe	1 No.16)
FORMAT No.	01111110 (7EH)			
BYTE COUNT	00000001 (01H)			
BYTE COUNT	01101110 (6EH)			$\sigma_{ij} = \sigma_{ij}$
	01001100(4CH)"L"	er.		
	01001101 (4DH) "M"			
	00100000 (20H) SPACE			•
	00100000 (20H) SPACE	•		
	00111000 (38H) "8"		+ 4	
	00110110 (36H) "6"			
	00110011(33H)"3"			
	00110110(36H)"6"			
DATA NAME	01000101(45H)"E"			
ER PATTERN No.	0zzzzzz	Z=ER PATTERN	$1 \sim 4 (1=A, 2=B,$	3=C, 4=D)
DATA	Oddddddd ——			
	228BYTE			
•	Oddddddd ——			
CHECK SUM	0eeeeee			
EOX	11110111 (F7H)			

System Setup Bulk Data

Transmission is enabled on the MIDI channel of the currently selected bank. Data is transmitted when BULK OUT 2 is displayed and BULK OUT is executed, and when the SYSTEM SETUP DATA DUMP REQUEST message is received.

⊕ Données en bloc de configuration du système
La transmission est validée sur le canal MIDI du bank actuellement sélectionné.
Les données sont transmises lorsque BULK OUT 2 est affiché et BULK OUT est exécuté ainsi que lorsque le message SYSTEM SETUP DATA DUMP REQUEST (demande de vidage des données de configuration du système) est reçu. -3-

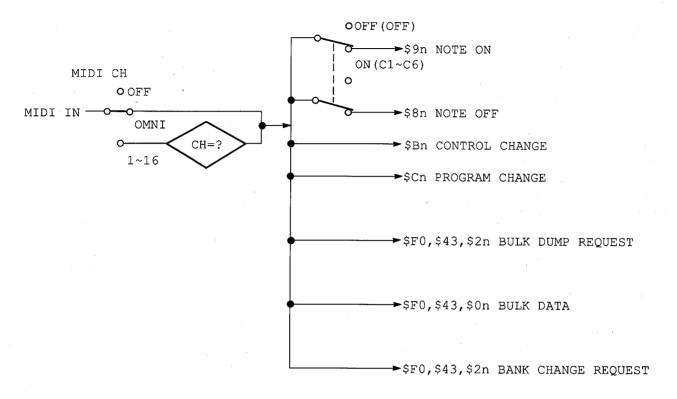

④ Systemblockdaten

Die Übertragung erfolgt auf dem Kanal der gerade angewählten Bank. Die Daten werden nur gesendet, wenn "BULK OUT 2" angezeigt und wenn ein Systemdaten-Abwurfbefehl (System setup data dump request) eingeht.

STATUS		11110000 (FOH)			
ID No.		01000011(43H)		*,	
SUB STATUS		0000nnnn (0nH)	n=0 (Channel	NO.1)~15 (Channel	No.16)
FORMAT No.		01111110(7EH)			
BYTE COUNT		00000000 (ООН)			
BYTE COUNT		00011001(19H)			
		01001100(4CH)"L"			
		01001101(4DH)"M"			
		00100000 (20H) SPACE			
		00100000 (20H) SPACE			
		00111000 (38H) "8"			
		00110110 (36н) "6"			
		00110011(33H)"3"			
		00110110(36н)"6"			
DATA NAME		01010011(53H)"S"	i.e	,	
		00100000 (20H) SPACE			
SOFT VERSION	No.	0vvvvvv			
SOFT VERSION	No.	0rrrrrr			
DATA		Oddddddd ——			
		13BY1	re		
		Oddddddd ——			
CHECK SUM		0eeeeee			
EOX		11110111 (F7H)			

- ⑤ 49 Memory/All Banks/All ER Patterns/System Setup Data/Bulk Data Transmission is enabled on the MIDI channel of the currently selected bank. Data is transmitted when BULK OUT 1 is displayed and ALL BULK OUT is executed. The data to be transmitted is the programs of Memory Nos. 51 99, all programs of the 4 bank change charts, the four ER patterns, and the System Setup data. The transmission order is as follows: programs of Memory Nos. 51 to 99, Bank A program change chart to Bank D program change chart, ER pattern A to ER pattern D, and System Setup data.
- ⑤ Données en bloc de 49 mémoires /Tous les banks/Tous les motifs ER/ Données de configuration du système La transmission est validée sur le canal MIDI du bank actuellement sélectionné. Les données sont transmises lorsque BULK OUT1 est affiché et l'instruction ALL BULK OUT est exécutée. Les données à transmettre sont les programmes des mémoires Nos 51 99, tous les programmes des tables de changements de programmes des 4 banks, les quatres motifs ER et les données de configuration du système. L'ordre de transmission est le suivant: programmes de mémoires Nos 51 à 99, tables des changements de programmes des banks A à D, motifs ER A à D et données de configuration du système.

(b) 49 Speicher/Alle Bänke/Alle ER-Speicher/System-Daten als Block Die Übertragung erfolgt auf dem Kanal der gerade angewählten Bank. Die Daten werden nur gesendet, wenn "BULK OUT 1" angezeigt und wenn der Befehl "ALL BULK OUT" ausgeführt wird. Es werden folgende Daten übertragen: RAM-Speicher 51~99, alle Daten der vier Programmwechsel-Zuordnungstabellen, die vier User-ER Speicher und die System-Daten. Die Übertragungsreihenfolge ist: RAM-Speicher, Programmwechseltabelle A~D, ER-Speicher A~D und die System-Daten.



DATA		0ddddddd 0dddddd		128BYTE
CHECK SUM		0eeeeee 11110111 (F7H)		
EOX		11110111 (1 711)		
STATUS		11110000 (FOH)		
EOX		11110111 (F7н)		BANK B
STATUS	-	11110000 (FOH)	•	BANK C
EOX		11110111 (F7H)		DANK C
STATUS		11110000 (FOH)		BANK D
EOX		11110111 (F7H)		
STATUS ID No.		11110000 (F0H) 01000011 (43H)		
SUB STATUS FORMAT No.		0000nnnn (0nH) 01111110 (7EH)		n=0(Channel No.1)~15(Channel No.16)
BYTE COUNT BYTE COUNT		00000001 (01H) 01101110 (6EH) 01001100 (4CH)	"L"	
		01001101 (4DH) 00100000 (2OH) 00100000 (2OH) 00111000 (38H) 00110110 (36H) 00110011 (33H)	"M" SPACE SPACE "8" "6"	
DATA NAME		00110011(33H) 00110110(36H)' 01000101(45H)'	" 6"	
ER PATTERN 1	No.			Z=BANK1~4 (1=A, 2=B, 3=C, 4=D)
DATA		0ddddddd 0ddddddd		228BYTE
CHECK SUM EOX		0eeeeee 11110111(F7H)		
STATUS		11110000 (FOH)		ER PATTERN B
EOX		11110111 (F7H)		
STATUS		11110000 (FOH)		ER PATTERN C
EOX		11110111 (F7H)	,	
STATUS		11110000 (FOH)) —	ER PATTERN D
EQV.		11110111 (5711)	. 1	HIV INITIALITY D

```
STATUS
                 11110000 (FOH)
ID No.
                 01000011 (43H)
                                      n=0 (Channel No.1) ~15 (Channel No.16)
                 0000nnnn (0nH)
SUB STATUS
FORMAT No.
                 01111110 (7EH)
                 00000000 (00H)
BYTE COUNT
                 00011001 (19H)
BYTE COUNT
                 01001100 (4CH) "L"
                 01001101 (4DH) "M"
                 00100000 (20H) SPACE
                 00100000 (20H) SPACE
                 00111000 (38H) "8"
                 00110110 (36H) "6"
                 00110011 (33H) "3"
                 00110110 (36H) "6"
                 01010011 (53H) "S"
DATA NAME
                 00100000 (20H)
SOFT VERSION No. 0vvvvvv
SOFT VERSION No. orrrrrr
                 0ddddddd
                                      13BYTE
                 0ddddddd
                 0eeeeee
CHECK SUM
EOX
                 11110111 (F7H)
```

3. Receiving Conditions

MIDI TRG. (BASE KEY)

Reception Data Channel information

1) Channel voice messages

① Note On

Reception is enabled on the MIDI channel of the currently selected bank. For programs of Memory Nos. 1 - 13, 27, and 34, if the parameter of MIDI TRG. is ON, this is received as a trigger.

For programs of Memory Nos. 28 - 32, this is received as a message to control pitch variation. The velocity value is ignored. Reception is not possible when the Base Key parameter is OFF.

① Note activée

La réception est validée sur le canal MIDI du bank actuellement sélectionné. Pour les programmes de mémoire Nos 1-13, 27 et 34, si le paramètre de MIDI TRG. est ON, ceci est reçu en tant que message de déclenchement. Pour les programmes des mémoires Nos 28 - 32, ceci est reçu en tant que message de contrôle de la variation de hauteur. La valeur de vélocité est ignorée. La réception n'est pas possible lorsque le paramètre "Base Key" est OFF.

① Note An

Der Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Ist die MIDI TRIGGER-Funktion der Programme $1\sim13$, 27 und 34 eingeschaltet, gelten die empfangenen Meldungen als Auslöser (Trigger).

Für die Programme 28 - 32 werden die empfangenen Meldungen zur Steuerung der Tonhöhe verwendet. Die Anschlagdynamik wird nicht ausgewertet. Der Empfang ist nur möglich, wenn der BASE KEY-Paremeter eingeschaltet ist.

STATUS NOTE No. 1001nnnn (9nH)

0kkkkkkk σνννννν

n=0 (Channel No.1)~15 (Channel No.16)

 $k=0 (C-2) \sim 127 (G8)$

v=0~127

2 Note Off

VELOCITY

This message is used when playback of the Memory No. 32 FREEZE 2 is finished. The velocity value is ignored. The reception conditions are the same as in ${\mathfrak O}$ Note On.

2 Note désactivée

Ce message est utilisé lorsque la reproduction de la mémoire No 32 FREEZE 2 est terminée. La valeur de vélocité est ignorée. Les conditions de réception sont les mêmes que pour 1> Note activée.

2 Note Aus

Diese Meldung ist nur am Ende der Wiedergabe des Programmes 32. Freeze 2 notwendig. Die Anschlagdynamik wird nicht ausgewertet. Die Empfangsbedingugen sind dieselben wie die der Note-An-Meldungen (1).

STATUS

1000nnnn (8nH)

n=0 (Channel No.1)~15 (Channel No.16)

NOTE No.

0kkkkkkk

 $k=0 (C-2) \sim 127 (G8)$

VELOCITY

OVVVVVV

v=0~127

3 Control Change

Reception is enabled on the MIDI channel of the currently selected bank. When receiving, parameters can be controlled. Change them by using the corresponding controller based on the Control Assignment List.

③ Changements de commande

La réception est validée sur le canal MIDI du bank actuellement sélectionné. Pendant la réception, les paramètres peuvent être contrôlés. Les changer en utilisant les commandes correspondantes spécifiées dans la liste des assignations de commandes.

3 Steuerelementänderung

Der Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Mit den Steuerelement-Meldungen kann man bestimmte Parameter steuern. Hierfür muß ein Steuerelement zugeteilt werden.

STATUS

1011nnnn (BnH)

n=0 (CHANNEL NO.1)~15 (CHANNEL NO.16)

CONTROL NO.

0cccccc

c=0~120

CONTROL VALUE 0vvvvvv

v=0~127

4 Program Change

Reception is enabled on the MIDI channel of the currently selected bank. When receiving, the desired program can be loaded, based on the program change chart of that particular bank.

Changement de programme

La réception est validée sur le canal MIDI du bank actuellement sélectionné. Pendant la réception, un programme appartenant au bank sélectionné peut être chargé.

④ Programmwechsel

Der Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Jede beliebige Speichernummer kann jeder beliebigen Programmwechselnummer zugeordnet werden.

STATUS 1100nnnn (CnH) n=0 (CHANNEL NO.1)~15 (CHANNEL NO.16) PROGRAM No. 0ppppppp p=0~127

4-2. System Information

- 1) System exclusive messages
- ① Memory Bulk Dump Request Reception is enabled on the MIDI channel of the currently selected bank. When this message is received, BULK OUT is executed for the program of the indicated memory number.
- ① Demande de vidage en bloc de mémoires La réception est validée sur le canal MIDI du bank actuellement sélectionné. Lorsque ce message est reçu, BULK OUT est exécuté pour le programme du numéro de mémoire indiqué.
- ① Speicherblockabwurf-Befehl
 Der Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Sobald dieser
 Befehl eingeht, wird der Blockabwurf (Bulk out) für den gerade aufgerufenen
 Speicher ausgeführt.

STATUS ID No.	11110000 01000011 0010nnnn	(F0H) (43H) (2nH)	n-0 (Channel	No.1)~15 (Channel	No 16)
SUB STATUS		1	II-0 (Channer	10:1) 13 (chamici	110.1107
FORMAT No.	01111110	(7EH)			
	01001100	(4CH) "L"			
	01001101	(4DH) "M"			
	00100000	(20H) SPACE			
	00100000	(20H) SPACE	at the second second		
	00111000	(38H) "8"			
	00110110	(36H)"6"			
	00110011	(33H) "3"		į.	
	00110110	(36H) "6"		•	
DATA NAME	01001101	(4DH) "M"			
MEMORY No.	Ommmmmmm		M=41 (memory	No.41) ~99 (MEMORY	No.99)
EOX	11110111	(F7H)			

- ② Program Change Chart Bulk Dump Request Reception is enabled on the MIDI channel of the currently selected bank. When this message is received, BULK OUT is executed for the program change chart (the chart showing the correspondence between program numbers and memory numbers) of the indicated bank.
- ② Demande de vidage en bloc de la table des changements de programme La réception est validée sur le canal MIDI du bank actuellement sélectionné. Lorsque ce message est reçu, BULK OUT est exécuté pour la table des changements de programme (la table indiquant la correspondance entre les numéros de programme et les numéros de mémoires) du bank indiqué.
- ② Blockdaten der Programmwechsel-Zuordnungstabelle einer Bank
 Der Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Geht ein
 Blockabwurfbefehl der Programmwechsel-Zuordnungstabelle (Program change chart
 bulk dump request) ein, so wird der Abwurf ausgeführt. Es werden dann die Daten
 der Programmwechsel-Zuordnungstabelle übertragen.

```
11110000 (FOH)
STATUS
               01000011 (43H)
ID No.
SUB STATUS
               0010nnnn (2nH)
                                       n=0 (Channel No.1)~15 (Channel No.16)
FORMAT No.
               01111110 (7EH)
               01001100 (4CH) "L"
               01001101 (4DH) "M"
               00100000 (20H) SPACE
               00100000 (20H) SPACE
               00111000 (38H) "8"
               001101·10 (36H) "6"
               00110011 (33H)"3"
               00110110 (36H) "6"
DATA NAME
               01010100 (54H)"T"
BANK No.
               Ozzzzzz
                                       Z=BANK1\sim4 (1=A, 2=B, 3=C, 4=D)
               11110111 (F7H)
EOX
```

3 User ER Pattern Bulk Dump Request

Reception is enabled on the MIDI channel of the currently selected bank. When this message is received, BULK OUT is executed for the data of the indicated ER pattern number.

③ Demande de vidage en bloc des motifs ER de l'utilisateur La réception est validée sur le canal MIDI du bank actuellement sélectionné. Lorsque ce message est reçu, BULK OUT est exécuté pour les données du numéro de motif ER indiqué.

③ User ER-Programmblockdaten

Der Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Geht ein Blockabwurfbefehl der Erstreflexions-Musterprogramme (User ER pattern bulk dump request) ein, so wird der Abwurf ausgeführt. Es werden dann die Daten des angezeigten Speichers übertragen.

STATUS		11110000	(FOH)	
ID No.		01000011	(43H)	
SUB STATUS		0010nnnn	(2nH)	n=0 (Channel No.1)~15 (Channel No.16)
FORMAT No.		01111110	(7EH)	
		01001100	(4CH) "L"	
		01001101	(4DH) "M"	
		00100000	(20H) SPACE	
		00100000	(20H) SPACE	
		00111000	(38H) "8"	
		00110110	(36H) "6"	
		00110011	(33H) "3"	
		00110110	(36H) "6"	
DATA NAME		01000101	(45H) "E"	
ER PATTERN	No.	0zzzzzz		Z=ER PATTERN1~4 (1=A, 2=B, 3=C, 4=D)
EOX		11110111	(F7H)	

System Setup Data Bulk Dump Request

Reception is enabled on the MIDI channel of the currently selected bank. When this message is received, BULK OUT is executed for System Setup data.

Demande de vidage en bloc des données de configuration de système
 La réception est validée sur le canal MIDI du bank actuellement sélectionné.
 Lorsque ce message est reçu, BULK OUT est exécuté pour les données de
 configuration du système.

Systemblockdaten

Er Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Die Daten werden nur gesendet, wenn ein Systemdaten-Abwurfbefehl (System setup data dump request) eingeht.

STATUS ID No.	11110000 01000011	•	
SUB STATUS	0010nnnn	(2nH)	n=0 (Channel No.1)~15 (Channel No.16)
FORMAT No.	01111110	(7EH)	
*	01001100	(4CH) "L"	
	01001101	(4DH) "M"	
	00100000	(20H) SPACE	
	00100000	(20H) SPACE	
	00111000	(38H) "8"	
	00110110	(36H) "6"	
	00110011	(33H) "3"	
.•	00110110	(36H)"6"	
DATA NAME	01010011	(53H) "S"	
	00100000	(20H)	
EOX	11110111	(F7H)	•

⑤ Bank Change Request

Reception is enabled on the MIDI channel of the currently selected bank. When this message is received, the desired bank can be switched to.

⑤ Demande de changement de bank

La réception est validée sur le canal MIDI du bank actuellement sélectionné. Lorsque ce message est reçu, le bank souhaité peut être sélectionné.

⑤ Bankanwahlbefehl

Er Empfang erfolgt auf dem Kanal der gerade angewählten Bank. Sobald dieser Befehl eingeht, kann die gewünschte Bank aufgerufen werden.

STATUS	11110000	(FOH)	
ID No.	01000011	(43H)	
SUB STATUS	0010nnnn	(2nH)	n=0 (Channel No.1)~15 (Channel No.16)
FORMAT No.	01111110	(7EH)	
	01001100	(4CH) "L"	
	01001101	(4DH) "M"	
	00100000	(20H) SPACE	
V.	00100000	(20H) SPACE	
	00111000	(38H) " 8"	
	00110110	(36H) "6"	
	00110011	(33H) "3"	
	00110110	(36H) "6"	
DATA NAME	01010101	(55H) "U"	
BANK No.	Ozzzzzzz		$Z=BANK1\sim4$ (1=A, 2=B, 3=C, 4=D)
EOX	11110111	(F7H)	

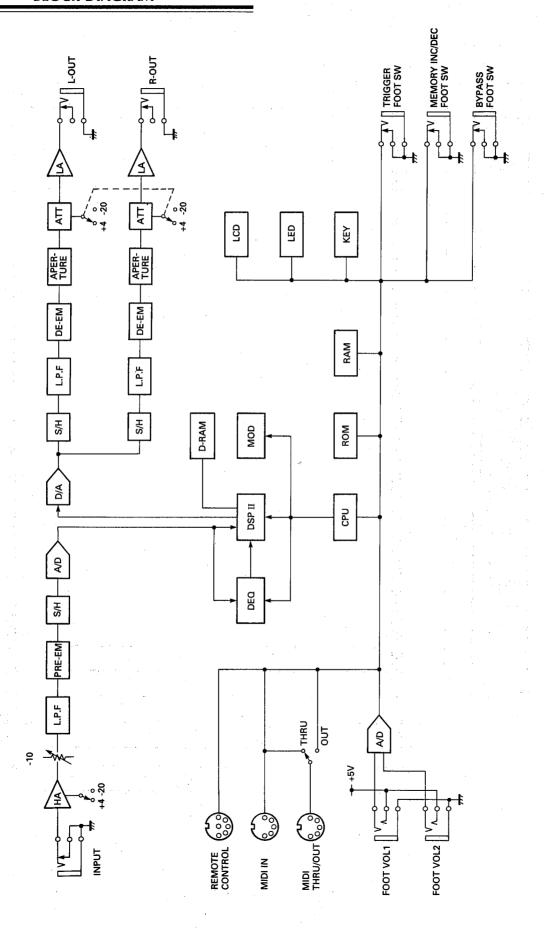
⑥ Memory Bulk Data

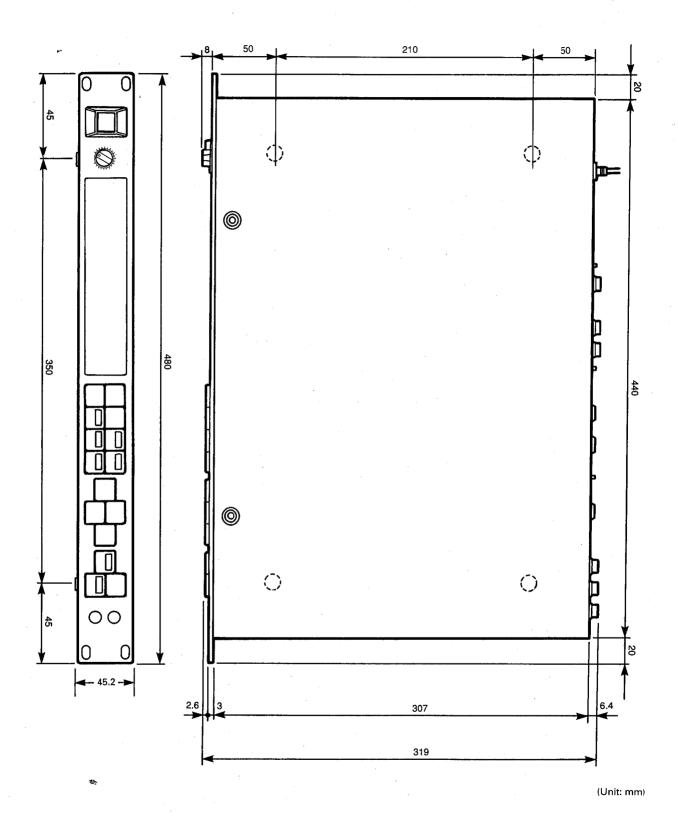
Same as "Memory Bulk Data" for transmission.

- ® Données de bloc de mémoire Idem que pour la transmission.
- ⑤ Speicherblockdaten

Siehe die "Speicherblockdaten" der Übertragung.

- ② Bank Program Change Chart Bulk Data
 Same as "Bank Program Change Chart Bulk Data" for transmission.
- ② Données en bloc des tables de changements de programme du bank Idem que pour la transmission
- ® User ER Pattern Bulk Data
 Same as "User ER Pattern Bulk Data" for transmission.
- ® Données en bloc des motifs ER de l'utilisateur Idem que pour la transmission.
- System Setup Bulk Data
 Same as "System Setup Bulk Data" for transmission.
- Données en bloc de configuration du système Idem que pour la transmission.


When receiving from the MIDI Data Filer MDF1, a computer, or other sources, the time interval between data exchanges $(F7 \sim F0)$ with the other unit must be set to 30msec or longer.


Lorsque les données sont reçues d'un "MIDI Data Filer" MDF1, d'un ordinateur ou d'une autre source, l'intervalle d'attente entre les échanges de données (F7 \sim F0) avec l'autre appareil doit être fixé à 30 msec ou plus.

Sollen Daten vom MDF1 MIDI Data Filer, einem Computer oder anderen Geräten geladen werden, muß die Pause zwischen zwei Dateneinheiten (F7 \sim F0) zumindest 30mSek betragen.

Fun	ction:	Transmitted :	Recognized :	Remarks
			1 - 16, off : 1 - 16, off :	memorized
	Default : Messages : Altered :	x :	OMNIoff/OMNIon: x x	memorized
Note Number :	True voice:		0 - 127	%. *.
Velocity	= = :	x x	x x	
After Touch	•		X X	
Pitch Ber	nder :	х	x	
	0 - 120 :	Х	0	
Control				
Change				
Prog Change :	True #	X *********	o 0 - 127	*1
System E	xclusive	0	: o	Bulk Dump
System : : Common :	Song Pos Song Sel Tune	: X : X : X	: x : x : x	
	:Clock e :Commands	: x : x	: x : x	:
:A1	cal ON/OFF l Notes OFF tive Sense set	: x	: x : x : o : x	* * 2
			+ory #1 - #99 is so	

Add-36

SPECIFICATIONS

ELECTRICAL CHARACTERRISTICS

FREQ. RESPONSE DYNAMIC RANGE DISTORTION

LEVEL CONTROL

20Hz~20kHz 90dB (TYPICAL) 0.03%(@1kHz)

INPUT

NUMBER OF CHANNELS NOMINAL LEVEL **IMPEDANCE**

UNBALANCED X1(PHONE JACK) +4/-20dBm SWITCHABLE

 $50K\Omega$

ROTARY CONTINUOUS

A/D CONVERSION

NUMBER OF CHANNELS SAMPLING FREO. QUANTIZATION

1 (AD CONVERTER X1) 44.1KHz (EXCEPT D-IN)

16bits

D/A CONVERSION

NUMBER OF CHANNELS SAMPLING FREQ. QUANTIZATION

44.1KHz (EXCEPT D-IN)

16bits

OUTPUT

NUMBER OF CHANNEL NOMINAL LEVEL **IMPEDANCE**

UNBALANCED X2(PHONE JACK) +4/-20dBm SWITCHABLE

 220Ω

MEMORY

PRESETS (ROM) **USER MEMORY (RAM)** 1~50 51~99

MIDI CONTROL

PROGRAM CHANGE (MEMORY SELECT) NOTE ON (MIDI BASE KEY SELECT, TRIGGER) **CONTROL CHANGE**

BULKDUMP & LOAD (PARAMERTER DUMP)

FRONT PANEL

CONTROLS

DISPLAY

INPUT LEVEL

KEYS PARAM. INC/DEC, PARAMETER, SCROLL BACK, LEVEL EQ, INT. PARAM, EXT CTRL ASSIGN

STORE, MEMORY INC/DEC.

RECALL,

UTILITY, TRIGGER, BYPASS

16 CHARA. X2 LINE LCD 2 DIGIT 7 SEGMENT LED (MEM#) 7 SEGMENT LED (LEVEL METER)

CONNECTORS EXT CTRL/FOOT VOL JACK X2

REAR PANEL

CONNECTORS

INPUT (PHONE JACK X 1) OUTPUT (PHONE JACK X 2) MIDI IN, THRU/OUT (DIN 5P X 2) TRIGGER (PHONE JACK)

MEMORY INC/DEC (PHONE JACK)

BYPASS (PHONE JACK)

INPUT LEVEL SW, OUTPUT LEVEL SW

MIDI THRU/OUT SW

GENERAL

POWER SUPPLY

US & CANADA: 120V, 60Hz, 20W GENERAL: 220-240V, 50/60Hz, 20W 480 X 45.2 X 319 (mm)

DIMENSIONS (W X H X D)

WEIGHT

SWITCHS

4.4kg

^{• 0}dB=0.775Vr.m.s

[·] Specifications and appearance subject to change without notice.

CARACTERISTIQUES TECHNIQUES

CARACTERISTIQUES ELECTRIQUES

Réponse en fréquence Plage dynamique

20 Hz - 20 kHz 90 dB (TYPIQUE) 0,03% (à 1 kHz)

Distorsion

ENTREE

Nombre de canaux Niveau nominal

Asymétriques × 1 (Prise "Jack") +4 / -20 dBm (commutable)

50 KΩ Impédance

Rotative continue

44.1 KHz (sauf D-IN)

CONVERSION A/N

Nombre de canaux

Quantification

Commande de niveau

1 (Convertisseuranalogique/numérique x 1)

44.1 KHz (sauf D-IN) Fréquence d'échantillonnage

16 bits

CONVERSION N/A

Nombre de canaux

Fréquence d'échantillonnage

16 bits Quantification

SORTIE

Asymétriques × 2 (Prise "Jack") Nombre de canaux +4 / -20 dBm (commutable) Niveau nominal

220 Ω Impédance

MEMOIRE

Présélections (ROM)

1-50 51--- 99

Mémoire de l'utilisateur (RAM)

COMMANDE MIDI

Changement de programme ("PROGRAM CHANGE") - Sélection des

mémoires

Note activée ("NOTE ON") - Sélection de la touche de base MIDI,

Déclenchement (Trigger)

Changement de commande ("CONTROL CHANGE")

Vidage et chargement de bloc (BULK DUMP & LOAD) - Vidage de paramètres

PANNEAU AVANT

Commandes **TOUCHES**

Niveau d'entrée

Incrémentation/décrémentation de paramètres, Paramètre, Défilement arrière (SCROLL BACK), Egalisation, Niveau, Paramètres internes, Assignation de commande externe, Mémorisation (STORE), Incrémentation/décrémentation de mémoire, Rappel (RECALL), Utilitaire, Déclenchement (TRIGGER), Con

tournement (BYPASS)

16 caractères × 2 lignes (Afichage à cristaux liquides) Affichage

DEL de 2 chiffres à 7 segments (No de mémoire)

7 segments DEL (indicateur de niveau)

Commande externe (EXT CTRL), prise de commande de volume au pied

(FOOT VOL) × 2

PANNEAU ARRIERE

Connecteurs

Connecteurs

Entrée (Prise "jack" × 1)

Sortie (Prise "jack" \times 2)

MIDI IN, THRU/OUT (Din 5 broches × 2)

Entrée/sortie numériques (Prise DIP 8 broches × 2)

TRIGGER (Prise "jack")

MEMORY IN/DEC (Prise "jack")

Niveau d'entrée, Niveau de sortie

MIDI THRU/OUT

Caractéristiques générales

Commutateurs

Alimentation

US et Canada: 120V, 60 Hz, 20W

Modèle général: 220-240V, 50/60 Hz, 20 W

Dimensions: $480 \times 45,2 \times 319 \text{ (mm)}$

Poids

4,4 kg

^{• 0}dB = 0,775V r.m.s.

[·] Caractéristiques et présentation susceptibles d'être modifiées sans préavis

TECHNISCHE DATEN

ELEKTRISCHE WERTE

Frequenzgang Dynamikbereich~

Klirrfaktor

20Hz~20kHz

90dB

0,03% (@ 1kHz)

EINGÄNGE

Anzahl Kanäle Nennpegel Impedanz Input-Regler

+4/-20dBm, UMSCHALTBAR $50k\Omega$

Rotierend-Rontinvierlich

Unsymmetrisch×1 (Klinken)

A/D-UMWANDLUNG

Anzahl Kanäle Abtastrate Quantisierung 1 (A/D Wandler×1) 44,1kHz (außer D-IN) 16 Bit

D/A-UMWANDLUNG

Anzahl Kanäle Abtastrate Quantisierung

44.1kHz (außer D-IN)

16 Bit

AUSGÄNGE

Anzahl Kanäle Nennpegel~ Last

Unsymmetrisch×2 (Klinken) +4 / -20dBm UMSCHALTBAR

 220Ω

SPEICHER

PRESET USER

1-50 (ROM) 51-99 (RAM)

MIDI

Programmwechsel (Speicheranwahl) Note-An (BASE KEY-Bestimmung), Trigger

Steuerelementänderung

Blockabwurf & empfang (Parameterübertragung)

FRONTPLATTE

Regler Tasten Eingangspegel

EQ, PARAM, SCROLL BACK, PARAMETER EVEL/DELAY, STORE, MEMORY

INC/DEC, RECALL, ONT. PARAM, TRIGGER, UTILITY, BYPASS

DISPLAY

LED-Kette

16 Zeichen×2 Zeilen (Flüssigkristall), 2 Ziffern (Leuchtdioden), 7 gliedrige (MEM #)

7 aliedrige (LEVEL METER)

ANSCHLÜSSE

FOOT VR JACK×2

RÜCKSEITE

ANSCHLÜSSE

INPUT (Klinke×1) OUTPUT (Klinke×2)

MIDI IN, MIDI THRU/OUT (DIN×2)

TRIGGER (Klinke) MEMORY INC/DEC (Klinke)

BYPASS (Klinke)

INPUT LEVEL, OUTPUT LEVEL **SCHALTER**

MIDI THRU/OUT SW

ALLGEMEINES

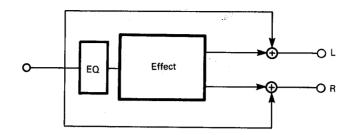
Stromanforderungen

ABMESSUNGEN

USA & Kanada: 120V, 60Hz, 20W

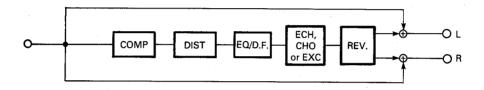
Allgemeines Modell: 220-240V, 50/60Hz, 20W

480×45,2×319 mm

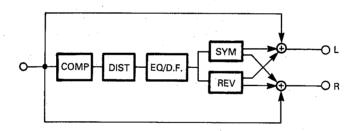

Gewicht

4,4kg

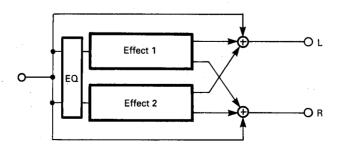
0dB= 0,775 V r.m.s.
Änderungen der technischen Daten ohne vorherige Ankündigung vorbehalten.


EFFECT MODE

① SINGLE (No. 1 ~ 37)



② MULTI (No. 38 ~ 47)


No.38 ~ 39 MULTI(ECH&REV) No.40 ~ 42 MULTI(CHO&REV) No.46 ~ 47 MULTI(EXC&REV)

No.43 ~ 45 MULTI(SYM+REV)

③ DUAL (No. 48 ~ 50)

SPXSOO USER PROGRAMMING TABLE

Date:

Programmer:

Memory No.	Program Title	Memory No.	Program Title	Memory No.	Program Title
1	REV1 HALL	34	TRIGGERED PAN	67	
2	REV2 HALL &GATE	35	COMPRESSOR	68	
3	REV3 ROOM 1	36	DISTORTION	69	
4	REV4 ROOM 2	37	AURAL EXCITER	.70	
5	REV5 ROOM 3	38	MULTI(ECH&REV)1	71	
6	REV6 WHITE ROOM	39	MULTI(ECH&REV)2	72	
7	REV7 VOCAL 1	40	MULTI(CHO&REV)1	73	
8	REV8 VOCAL 2	41	MULTI(CHO&REV)2	74	,
9	REV9 PLATE	42	MULTI(CHO&REV)3	75	
10	REV10PLATE&GATE	43	MULTI(SYM+REV)1	76	
11	REV11 TUNNEL	44	MULTI(SYM+REV)2	77	
12	REV12 CANYON	45	MULTI(SYM+REV)3	78	
13	REV13 BASEMENT	46	MULTI(EXC&REV)1	79	
14	PERCUSSION ER	47	MULTI(EXC&REV)2	80	
15	GATE REVERB	48	PLATE+HALL ~	81	
16	REVERSE GATE	49	ER+REV	82	•
17	PROGRAMMABLE ER	50	ECHO+REV	83	
18	DELAY L, R	51		84	
19	DELAY L, C, R	52		85	
20	STEREO ECHO	53		86	
21	STEREO FLANGE	54		87	
22	CHORUS 1	55		88	/
23	CHORUS 2	56		89	
24	STEREO PHASING	- 57		90	·
25	TREMOLO	58		91	
26	SYMPHONIC	59		92	
27	ADR-NOISE GATE	60		93	
28	PITCH CHANGE 1	61		94	
29	PITCH CHANGE 2	62		95	
30	PITCH CHANGE 3	63		96	
31	MONO PITCH	64		97	
32	FREEZE	65	· · · · · · · · · · · · · · · · · · ·	98	
33	PAN	66		99	

SPX OO USER PROGRAMMING TABLE

Memory No.: Program Title:

Date: Programmer:

Function						Parameter					
Key	-	2	က	4	2	9	7	æ	6	9	
] 		
PARAM	12	13	14	15	16	17	18	19	22	21	22
PARAM											
0											
9											
LEVEL											
[] E			1 3 3 8 8 8 1 1 1								
ASSIGN											

MIDI PROGRAM CHANGE NUMBER VS MEMORY (PROGRAM) NUMBER

BANK:		ch=		Date:	Progra	mmer:	
PGM	1	MEM	PGM 44	MEM	PGM	87	MEM
PGM	2	MEM	PGM 45	MEM	PGM	88	MEM
PGM	3	MEM	PGM 46	MEM	PGM	89	MEM
PGM	4	MEM	PGM 47	MEM	PGM	90	MEM
PGM	5	MEM	PGM 48	MEM	PGM	91	MEM
PGM	6	MEM	PGM 49	MEM	PGM	92	MEM
PGM	7	MEM	PGM 50	MEM	PGM	93	MEM
PGM	8	MEM	PGM 51	MEM	PGM	94	MEM
PGM	9	MEM	PGM 52	MEM	PGM	95	MEM
PGM	10	MEM	PGM 53	MEM	PGM	96	MEM
PGM	11	MEM	PGM 54	MEM	PGM	97	MEM
PGM	12	MEM	PGM 55	MEM	PGM	98	MEM
PGM	13	MEM	PGM 56	MEM	PGM	99	MEM
PGM	14	MEM	PGM 57	MEM .	PGM	100	MEM
PGM	15	MEM	PGM 58	MEM	PGM	101	MEM
PGM	16	MEM	PGM 59	MEM	PGM	102	MEM
PGM	17	MEM	PGM 60	MEM	PGM	103	MEM
PGM	18	MEM	PGM 61	MEM	PGM	104	MEM
PGM	19	MEM	PGM 62	MEM	PGM	105	MEM
PGM	20	MEM	PGM 63	MEM	PGM	106	MEM
PGM	21	MEM	PGM 64	MEM	PGM	107	MEM
PGM	22	MEM	PGM 65	MEM	PGM	108	MEM
PGM	23	MEM	PGM 66	MEM	PGM	109	MEM
PGM	24	MEM	PGM 67	MEM	PGM	110	MEM
PGM	25	MEM	PGM 68	MEM	PGM	111	MEM
PGM	26	MEM	PGM 69	MEM	PGM	112	MEM
PGM	27	MEM	PGM 70	MEM	PGM	113	MEM
PGM	28	MEM	PGM 71	MEM	PGM	114	MEM
PGM	29	MEM	PGM 72	MEM	PGM	115	MEM
PGM	30	MEM	PGM 73	MEM	PGM	116	MEM
PGM	31	MEM	PGM 74	MEM	PGM	117	MEM
PGM	32	MEM	PGM 75	MEM	PGM	118	MEM
PGM	33	MEM	PGM 76	MEM	PGM	119	MEM
PGM	34	MEM	PGM 77	MEM	PGM	120	MEM
PGM	35	MEM	PGM 78	MEM	PGM	121	MEM
PGM	36	MEM	PGM 79	MEM	PGM	122	MEM
PGM	37	MEM	PGM 80	MEM	PGM	123	MEM
PGM	38	MEM	PGM 81	MEM	PGM	124	мем
PGM	39	MEM	PGM 82	MEM	PGM	125	MEM
PGM	40	MEM	PGM 83	MEM	PGM	126	МЕМ
PGM	41	MEM	PGM 84	MEM	PGM	127	MEM
PGM	42	MEM	PGM 85	MEM	PGM	128	MEM
PGM	43	MEM	PGM 86	MEM			

Litiumbatteri!

Bör endast bytas av servicepersonal. Explosionsfara vid felaktig hantering.

VAROITUS!

Lithiumparisto, Räjähdysvaara. Pariston saa vaihtaa ainoastaan alan ammattimies.

ADVARSEL!

Lithiumbatteri! Eksplosionsfare. Udskiftning må kun foretages af en sagkyndig, — og som beskrevet i servicemanualen.

YAMAHA